On the Planarity of G^{++}

Lili Yuan1,*, Xiaoping Liu2

1College of Mathematics and System Sciences, Xinjiang University, Urumqi, P. R. China
2Department of Mathematics, Xinjiang Institute of Engineering, Urumqi, P. R. China

Email address:
yuanli0920@163.com (Lili Yuan), 1296840821@qq.com (Xiaoping Liu)

*Corresponding author

To cite this article:
doi: 10.11648/j.ajam.20180601.15

Received: February 10, 2018; Accepted: March 1, 2018; Published: March 22, 2018

Abstract: Let G be a simple graph. The transformation graph G^{++} of G is the graph with vertex set $V(G) \cup E(G)$ in which the vertex x and y are joined by an edge if and only if the following condition holds: (i) $x, y \in V(G)$ and x and y are adjacent in G, (ii) $x, y \in E(G)$, and x and y are adjacent in G, (iii) one of x and y is in $V(G)$ and the other is in $E(G)$, and they are not incident in G. In this paper, it is shown G^{++} is planar if and only if $|E(G)| \leq 2$ or G is isomorphic to one of the following graphs: $C_3, K_1, P_4, P_4 + K_1, P_5 + K_2, P_3 + K_2 + K_1, K_{1,1}$, $3K_2, 3K_3 + K_1, 3K_2 + 2K_1, C_4, C_4 + K_1$.

Keywords: Total Graph, Planarity, Transformation Graph

1. Introduction

All graphs considered here are finite, simple and undirected. Undefined terminology and notation can be found in [2]. Let $G = (V(G), E(G))$ be a graph. $|V(G)|$ is called the order of G, $|E(G)|$ is called the size of G. The neighborhood $N_G(v)$ of v is the set of all vertices of G adjacent to v. Since G is simple, $|N_G(v)| = d_G(v)$.

Suppose that V' is a nonempty subset of $V(G)$. The subgraph $G[V']$ of G induced by V' is a graph with $V(G[V']) = V'$ and $uv \in E(G[V'])$ if and only if $uv \in E(G)$.

Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be two graphs. The union $G \cup H$ of G and H is the graph whose vertex set is $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$. Particularly, we denote their union by $G + H$ if they are disjoint, i.e. $V(G) \cap V(H) = \emptyset$.

The line graph $L(G)$ of G is the graph whose vertex set is $E(G)$, and in which two vertices are adjacent if and only if they are adjacent in G. The total graph G^{+++} of G is the graph whose vertex set is $V(G) \cup E(G)$, and in which two vertices are adjacent if and only if they are adjacent or incident in G. Wu and Meng [9] generalized the concept of total graph, and introduced some new graphical transformations. We adopt the symbol G^{+++} with $x, y, z \in \{+,−\}$ introduced in [9].

A graph is said to be embeddable in the plane, or planar, if it can be drawn in the plane so that its edges intersect only at their end vertices. A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions. Behzad [1] characterized the graphs G for which G^{++} is planar. Liu [8] give a necessary and sufficient condition for a graph G for which G^{++} is planar. Wu et al. [10] proved that G^{+++} is planar if and only if the order of G is at most 4. We refer to [4, 5, 6, 7, 10, 12, 13] for more relevant results on G^{+++}. As usual, the complete graph, the cycle, the path of order n are denoted K_n, C_n, P_n, respectively.

We use the well-known theorem of Kuratowski [2] in Section 2.

Theorem 1.1. A graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$.

Corollary 1.2. Every simple planar graph has a vertex of degree at most five.

Our main result is given as follows.

Theorem 1.3. Let G be a graph of size m. Then G^{++} is planar if and only if $m \leq 2$ or G is isomorphic to one of the following graphs: $C_3, C_3 + K_1, P_4, P_4 + K_1, P_5 + K_2, P_3 + K_2 + K_1, K_{1,1}$, $3K_2, 3K_3 + K_1, 3K_2 + 2K_1, C_4, C_4 + K_1$.

Proof. It is immediate form the results of Lemmas 2.1-2.5.

2. Proof

We start with a trivial observation.
Lemma 2.1. If H is a subgraph of G, then H++− is a subgraph of G++−.

In particular, by Lemma 2.1, if H++− is nonplanar and G = H + kK1 for an integer k ≥ 1, then G++− is nonplanar. One can easily check that G++− is planar for each G of size m ≤ 2.

Next we consider the graphs of size 3. There are precisely five graphs of size 3 without isolated vertex as shown in Figure 1.

Figure 1. All graphs of size 3 with no isolated vertices.

Lemma 2.2. For a graph G of size 3, G++− is planar if and only if G ∈ {C3, C3 + K1, P4, P4 + K1, P3 + K2, P3 + K2 + K1, K1,3 + K1, 3K2, 3K2 + K1, 3K2 + 2K1}.

Proof. The sufficiency. As illustration in Figure 2, the transformation graphs G++− of C3 + K1, P4 + K1, P3 + K2 + K1, K1,3 + K1, 3K2 + 2K1 are planar. By Lemma 2.1, the transformation graphs G++− of C3, P4, P3 + K2, K1,3, 3K2, 3K2 + K1 are planar.

The necessity. For each G ∈ {C3 + 2K1, P4 + 2K1, P3 + K2 + 2K1, K1,3 + 2K1, 3K2 + 3K1} the transformation graph (G + 2K1)++− of G is nonplanar since it contain a subdivision of K5 or K3,3, as shown in Figure 3.

Figure 2. Transformation graphs G++− of C3 + K1, P4 + K1, P3 + K2 + K1, K1,3 + K1, 3K2 + 2K1.

Figure 3. Transformation graphs G++− of C3 + 2K1, P4 + 2K1, P3 + K2 + 2K1, K1,3 + 2K1, 3K2 + 3K1.

Now we consider the graphs of size 4. There are precisely eleven graphs of size 4 without isolated vertex as shown in Figure 4.
Lemma 2.3. For a graph \(G \) of size 4, \(G^{++} \) is planar if and only if \(G \in \{C_4, C_4 + K_1\} \).

Proof. The sufficiency. The planar embedding of \((C_4 + K_1)^{++}\) in Figure 6 shows that \((C_4 + K_1)^{++}\) is planar. Moreover, by Lemma 2.1, \((C_4)^{++}\) is planar.

The necessity. Let \(G \) be a graph of size 4. Then \(G \) can be obtained from a graph in Fig. 4 by adding some isolated vertices. By Figure 4, 5, 6, 7 and Lemma 2.1, \(G^{++} \) is nonplanar if \(G \not\in \{C_4, C_4 + K_1\} \).

Figure 4. All graphs of size 4 with no isolated vertices.

Figure 5. Transformation graphs \(G^{++} \) of \(P_5, P_4 + K_2, P_3 + 2K_2, 4K_2 \).

Figure 6. Transformation graphs \(G^{++} \) of some graphs of size 4.
Now we consider graphs of size 5. There are precisely twenty six graphs of size 5 without isolated vertices as shown in Figure 8.

Lemma 2.4. For any graph G of size 5, G^{++} is nonplanar.

Proof. Let G be a graph of size 5, and let H be subgraph of G with size 4 without isolated vertices. By Lemma 2.1, H^{++} is a subgraph of G^{++}. By Lemma 2.3, H^{++} is nonplanar if H is not isomorphic to C_4. Now assume that G contains C_4. Then G is isomorphic to the third graph in Figure 9, and one can see that G^{++} is nonplanar.
Lemma 2.5. For a graph G of size $m \geq 6$, G^{+++} is nonplanar.

Proof. Trivially, G contains a subgraph H of size 5, and by Lemma 2.1, $H^{++−}$ is a subgraph of $G^{++−}$. Furthermore, by Lemma 2.4, $G^{++−}$ is nonplanar.

3. Conclusion

In this paper, a necessary and sufficient condition for a graph G such that $G^{++−}$ is planar. It is interesting to investigate some other properties or parameters, such as chromatic number, connectivity, domination number.

Acknowledgements

The research was supported by National Natural Science Foundation of China (No. 11661077).

References

