
 

American Journal of Applied Mathematics 
2019; 7(3): 70-79 

http://www.sciencepublishinggroup.com/j/ajam 

doi: 10.11648/j.ajam.20190703.11 

ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online)  

 

Sensitivity Analysis and Modeling the Impact of Screening 
on the Transmission Dynamics of Human Papilloma Virus 
(HPV) 
Eshetu Dadi Gurmu, Purnachandra Rao Koya* 

Department of Mathematics, Wollega University, Nekemte, Ethiopia 

Email address: 
 

*Corresponding author 

To cite this article: 
Eshetu Dadi Gurmu, Purnachandra Rao Koya. Sensitivity Analysis and Modeling the Impact of Screening on the Transmission Dynamics of 

Human Papilloma Virus (HPV). American Journal of Applied Mathematics. Vol. 7, No. 3, 2019, pp. 70-79.  

doi: 10.11648/j.ajam.20190703.11 

Received: June 21, 2019; Accepted: July 22, 2019; Published: August 26, 2019 

 
Abstract: In this paper, a mathematical model on the Human Papilloma Virus (HPV) governed by a system of ordinary 

differential equations is developed. The aim of this study is to investigate the role of screening as a control strategy in reducing 

the transmission of the disease. It is shown that a solution for the system of model equations exists and is unique. Further, it is 

shown that the solution is both bounded and positive. Hence, it is claimed that the model developed and presented in this paper 

is biologically meaningful and mathematically valid. The model is analyzed qualitatively for verifying the existence and 

stability of disease free and endemic equilibrium points using threshold parameter that governs the disease transmission. 

Furthermore, sensitivity analysis is performed on the key parameters driving Human Papilloma Virus and to determine their 

relative importance and potential impact on the dynamics of Human Papilloma Virus. Numerical result shows that Human 

Papilloma Virus infection is reduced using screening strategies. Due to the presence of interventions, the number of susceptible 

cells decreases implying that, most of the susceptible cells are screened. Similarly, the number of unaware infected cells 

decreases. This happens because unaware cells become aware after screening. The screened infected cells initially increase and 

then start to diminish after the equilibrium point. This is because many people from screened class recovered through 

treatment. Also, the number of cells with cancer decreases and this may be due to disease induced death. Furthermore, the 

number of recovered cells increases because there are two ways of recovering, through immune system or treatment. With 

��=0.5677, implies that screening can reduce the transmission of the disease in the population when �� � 1. 

Keywords: HPV Infection, Sensitivity Analysis, Screening, Basic Reproduction Number, Stability Analysis,  

Jacobian Matrix, Numerical Simulation 

 

1. Introduction 
Biology of HPV: Human Papilloma Virus (HPV) is the 

name of a group of viruses that includes more than 100 

different types and also more than 40 of these viruses are the 

most common and sexually transmit in the world. Among 

them, HPV types 16, 18, 31 and 45 are referred to as “high-

risk’’ and causes approximately 85% of cervical cancers. The 

targets of initial infection are the basal epithelial cells in the 

cervix. Subsequent binding and entry, viral material migrates 

to the nucleus and establishes the HPV genomes as multiple-

copy extra chromosomal plasmids, which are maintained at 

approximately 20 to 100 copies per infected cell. Infected 

cells express viral proteins, E6 and E7, which interfere with 

the normal cell cycle, promoting proliferation and 

deactivating the tumor suppressor proteins p53 and pRb. 

Subsequent viral genome replication and cell division, one of 

the daughter cells migrates away from the basal layer and 

starts a program of differentiation. Unlike normal cells, HPV-

infected cells undergo differentiations but remain active in 

the cell cycle. Some HPV infections of healthy hosts can be 

cleared by the immune system. However, many infections, 

especially by high risk strains such as HPV 16 and 18, 

become chronic. These persistent infections constantly shed 
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HPV virions. Ultimately, the persistence of actively 

proliferating cells leads to the development of precancerous 

cells, which are at risk, in turn, of becoming cancer cells. 

With proper treatment, precancerous cells may be prevented 

from progressing to the cancerous stage [1]. 

Eradication HPV: Most of the HPV infections are 

asymptomatic and can feed away without treatment over the 

course of a few years. For instance, about 70% of HPV 

infections fed away within a year and 90% within two years. 

However, in some people infection can persist for many 

years and can cause warts or low risk genotype of HPV, 

while other types lead to different kinds of cancers or high 

risk genotype of HPV including cervical cancer [2-3]. 

AlthoughHPV itself cannot be treated, the cellular changes 

that come from any HPV infection canbe treated. For 

examples, genital warts, cervical, anal, and genital cancers 

can be treatedif the infection is diagnosed during the early 

stage of development. Pre-cancerous cell changes caused by 

HPV can be detected by Pap tests and treat individuals who 

are found already infected. The purpose of screening is to 

provide treatment for those who are found to have HPV 

infection [4]. 

Statistics of HPV: According to the National Cancer 

Registry cancer kills more people than HIV/AIDS, malaria 

and tuberculosis combined [5]. Statistics show that 18.1 

million new cases, 9.6 million cancer related deaths, and 43.8 

million people living with cancer in 2018. The number of 

new cases is expected to rise from 18 million to 22 million by 

2030 and the number of global cancer deaths is projected to 

increase by 45% in the period from 2007 to 2030 [6]. Almost 

80% of cervical cancer cases and deaths occur in poor 

countries. In Sub-Saharan Africa, cervical cancer accounts 

for 22.5% of all cancer cases in women, and the majority of 

women who develop cervical cancer live in rural areas [7]. 

Eastern Africa is one of the most heavily affected areas with 

an incidence of more than 30 cases per 100,000 women per 

year [8]. In Ethiopia, cancer accounts for about 5.8% of total 

national mortality. Although population-based data does not 

exist in the country except for Addis Ababa, it is estimated 

that the annual incidence of cancer is around 60,960 cases 

and the annual mortality over 44,000. The most prevalent 

cancers in Ethiopia among the entire adult population are 

breast cancer (30.2%), cancer of the cervix (13.4%) and 

colorectal cancer (5.7%). About two-thirds of annual cancer 

deaths occur among women [9]. 

Importance of Modeling: A mathematical model is a 

description of a system using mathematical tools and 

language. Mathematical models are of great importance in 

the natural sciences, including biology and epidemiology. 

They help us to gain new understanding about a system, 

organize and make sense of biological data, obtain the 

response behavior of the system, seek optimal performance 

and intervention strategies, and make predictions about the 

system. Mathematical modeling of infectious diseases began 

in 1760s with Daniel Bernoulli's modeling of smallpox. Since 

then, mathematical models have been developed to simulate 

the spread of a wide range of infectious diseases, such as 

HIV, tuberculosis, malaria and influenza to name but a few 

examples. These mathematical models have been developed 

to address a range of questions that cannot be answered 

through the use of traditional epidemiological methods. 

Survey of Modeling: Many mathematical models have 

been developed to analyze the dynamics of transmission of 

HPV infection and its associated health problems, and as well 

study the impact of some control strategies against the virus. 

It is an essential and effective way to totally understand the 

real-world problems by establishing mathematical models 

and analyzing their dynamical behaviors. Old and recent 

studies such as [10] developed a mathematical model to 

investigate the impact of vaccination against human 

Papilloma virus, accounting for a wide-spread childhood 

vaccination program that may be supplemented by voluntary 

adult vaccination. Also, [11] formulated an SIS model for 

human Papilloma virus transmission with vaccination as a 

control strategy and [12] developed a dynamic model for the 

heterosexual transmission of Human Papillomavirus types 16 

and 18, which are covered by available vaccines. Moreover, 

Kermack and McKendrick [13] develop SIR cancer model 

and some other recent studies by Akram et al [14] develop 

the mathematical model that describe interaction between 

uninfected tumor cells and infected tumor cell and modified 

with count treatment of cells by chemotherapy and recovery 

class [15]. 

Motivation for the present Model: However, none of them 

considered the mathematical model for analyzing screening 

on reducing HPV infection in the population. In this study a 

mathematical model will be developed to determine the 

effectiveness of screening in attempting to reduce HPV 

transmission. The purpose of screening is to provide 

treatment for those who are found to have HPV infection. So 

in this study the model in [15] is modified by adding unaware 

infected and screening infected class instead of treatment and 

cervical cancer class. 

2. Model Formulation 
Mathematical modeling process requires translation of a 

biological scenario into a mathematical problem. It begins 

with a clear description of the processes based on the 

scientists understanding of the system. The translation into 

mathematical equations should be made with a specific goal 

or biological question in mind. Then the verbal description of 

the system is encoded in mathematical equations. 

Mathematical models usually consist of parameters and 

variables that are connected by relationships. Variables are 

abstractions of the system properties that can be quantified or 

measured and parameters describe the rate of variables. 

The model of Human Papilloma Virus (HPV) infection and 

cervical cancer development in the cervix consists of five 

class: (�) Susceptible class denoted by 	(
) consists of cells 

which are capable of becoming infected (��) Unaware 

infected class denoted by �� (
) consists of cells which are 

unaware infected with virus and are also infectious (���) 

Screened infected class denoted by �(
) consists of cells 
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which are screened infected with virus and provide treatment 

for those who are found to have HPV infection (��) 

Recovered class denoted by �(
) consists of recovered 

cellsand ��� Cervical Cancer class denoted by ��
� consists 

of cervical cancer cells. 

Here, a mathematical model of the Human Papilloma Virus 

is constructed based on the following assumptions:  

(i) Susceptible individuals are recruited into the 

population at a constant rate �. 

(ii) Susceptible cells may acquire HPV infection at 

rate  � when they come into effective contact with 

infectious cells at the rate � that may lead to 

infection. The force of infection in the model is 

given as � � �����
� � ��
�� �⁄ . 

(iii) The unaware infected cells are screened and join the 

screened infected class at a rate �. 

(iv) Some of the unaware infected cells progress to 

cervical cancer at a rate� and others recover naturally 

through body immune system at a rate�. 
(v) The screened infected cells are treated at a rate� and 

move to recovery class or may progress to develop 

cervical cancer as a result of failure of the treatment 

used at a rate� thus moving to cervical cancer class. 

(vi) Recovered cells revert to the susceptible class after 

losing their immunity at a rate  . 

(vii) Cervical cancer cells die of infection at a rate !. 

(viii) All types of cells suffer natural mortality at a rate ". 

(ix) All parameters in the model are positive. 

Table 1. Notations and description of model variables. 

Variable Description S�t�   Population size of susceptible cells I&�t�  Population size of unaware infected and infectious cells I'�t�  Population size of screened infected cells  R�t�  Population size of recovered cells C�t�  Population size of cervical cancer cells 

Table 2. Notations and description of model parameters. 

Parameter Description 

 �  
Recruited rate of susceptible cells. With this rate new cells 

will born and they will enter into susceptible class 

�  
Transmission rate of infection. With this rate cells transfer 

from compartment	 to �  �  Infection rate or force of infection �  With this rate cells transfer from compartment�� to� 

�  
Treatment rate. With this rate cells transfer from 

compartment� to �  
   

Recovery rate. With this rate cells transfer from 

compartment� to 	  �  With this rate cells transfer from compartment�� to �  �  With this rate cells transfer from compartment� to �  
!  

Death rate due to infection. With this rate cells 

of� compartment die of the disease. 

"  
Natural death rate. With this rate cells of all the 

compartments die naturally. 

Upon including the basic assumptions together with the 

description of both model variables and parameters the 

schematic diagram of the modified model can be given as in 

Figure 1. 

 
Figure 1. Schematic diagram of the model. 

Based on the model assumptions, the notations of variables 

and parameters and the schematic diagram, the model 

equations are formulated and given as follows:  

*	 *
⁄ � Π , �� � "�	 �  �                   (1) 

*�� *
⁄ � �	 , �� � � � � � "���                (2) 

*� *
⁄ � ��� , �� � � � "��                   (3) 

*� *
⁄ � ��� � �� , �! � "��                 (4) 

*� *
⁄ � ��� � �� , � � "��               (5) 

The non-negative initial conditions of the system of model 

equations (1) – (5) are denoted by  	�0� . 0, ���0� 00, ��0� 0 0, ��0� 0 0, ��0� 0 0 . This system consists of 

five first order non-linear ordinary differential equations. 

3. Mathematical Analysis of the Model 
The mathematical analysis of the model described by the 

system (1) – (5) is presented here. The model represented by 

the systems of differential equations(1) – (5) will be analyzed 

in the feasible region and since the model represents the 

populations all the state variables and the parameters are 

assumed to be positive. The invariant region for the model 

(1) – (5) is 

Ω �  2�	, �� , � , �, �� 3 456  ;  N 9 �π µ⁄ �< 

Therefore, the solutions of the system of ordinary 

differential equations (1) – (5) are feasible for all
 . 0 if they 

enter the invariant region Ω. 

3.1. Boundedness, Existence and Positivity of Solution 

In order to show that the model is biologically valid, it is 

required to prove that the solutions of the system of 

differential equations (1) – (5) are both positive and bounded 

for all time. It is done starting with Lemma 1. 

Lemma 1 (Boundedness): Thesolutions of the system of 

model equations (1) – (5) are bounded. That is, the model 

variables 	�
�, ���
�, ��
�, ��
�, and ��
�  are bounded for 

all 
. 

Proof: Recall that each population size is bounded if and 

only if the total population size is bounded. Hence, in the 

present case it is sufficient to prove that the total population 

size� � 	�
� � ���
� � ��
� � ��
� �  ��
� is bounded for 

all 
. It can be begun by showing that all feasible solutions 
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are uniformly bounded in a proper subsetΩ 3 456 where the 

feasible region Ω  is given by Ω �  2(	, �� , �, �, �) ∈
ℝ5

6 ;  N ≤ (Π μ⁄ )<.  

Now, summation of all the four equations (1) – (5) of the 

model givesdN(t) dt⁄ = Π − μN(t) − γC. It can be expressed 

without loss of generality, after eliminating the negative term 

(−γC)  which is appearing on the right hand side, as an 

inequality as dN(t) dt⁄ ≤ �Π − μN(t)� . Equivalently this 

inequality can be expressed as a linear ordinary differential 

inequality as dN(t) dt⁄ + μN(t) ≤ Π giving general solution 

upon solving asN(t) ≤ (Π μ⁄ ) + ?@ABC . But, the term�(0) 

denotes the initial values of the respective variable i.e., 

N(t) = N(0) at  t = 0. Thus, the particular solution can be 

expressed asN(t) ≤ (Π μ⁄ ) + �N(0) − (Π μ⁄ )�@ABC . Further, 

it can be observed that �(
) → (Π μ⁄ ) as 
 → ∞. That is, the 

total population size�(
) takes off from the value N(0) at the 

initial time t = 0 and ends up with the bounded value (Π μ⁄ ) 

as the time 
 grows to infinity. Thus it can be concluded 

that �(
) is bounded as0 ≤ �(
) ≤ (Π μ⁄ ). 

Therefore, (Π μ⁄ )  is an upper bound of �(
).  Hence, 

feasible solution of the system of model equations (1) – (5) 

remains in the regionΩwhich is positively invariant set. Thus, 

the system is biologically meaningful and mathematically 

well posed in the domain Ω . Further, it is sufficient to 

consider the dynamics of the populations represented by the 

model system (1) – (5) in that domain. 

Therefore, it can be summarized the result of Lemma 1 as 

“the model variables 	(
), ��(
), �(
), �(
), and �(
)  are 

bounded for all 
.” 

Lemma 2 (Existence) Solutions of the model equations (1) 

– (5) together with the initial conditions 	(0) > 0, ��(0) ≥
0, �(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0  exist in ℝ5

6 i.e., the model 

variables 	(
), ��(
), �(
), �(
), and �(
) exist for all 
 and 

will remain inℝ5
6 . 

Proof The right hand sides of the system of equations(1) – 

(5) can be expressed as follows: 

EF(	, �� , � , �, �) = Π − (� + ")	 +  � 

EG(	, �� , �, �, �) = �	 − (� + � + � + ")�� 

EH(	, �� , � , �, �) = ��� − (� + � + ")�         (6) 

EI(	, �� , �, �, �) = ��� + �� − (! + ")� 

E6(	, �� , � , �, �) = ��� + �� − ( + ")� 

According to Derrick and Groosman theorem, let Ωdenote 

the region Ω =  2(	, �� , �, �, �) ∈ ℝ5
6 ;  N ≤ (Π μ⁄ )< . 

Then equations (1) – (5) have a unique solution if 

(JEK) LJMNO⁄ , �, P = 1, 2, 3, 4, 5  are continuous and bounded 

inΩ. Here using the notationsMF = 	, MG = �� , MH = �, MI =
�, M6 = � continuity and the boundedness is verified here 

under. 

For EF: 

|(JEF) (J	)⁄ | = |−��(�� + �) �⁄ + "�| � ∞ 

|(JEF) (J��)⁄ | = |−(�	 �⁄ )| � ∞ 

|(JEF) (J�)⁄ | = |−(�	 �⁄ )| � ∞ 

|(JEF) (J�)⁄ | =  0 � ∞ 

|(JEF) (J�)⁄ | = | | � ∞. 

For EG: 

|(JEG) (J	)⁄ | = |�(�� + �) �⁄ | � ∞ 

|(JEG) (J��)⁄ | = |−(� + � + � + ")| � ∞ 

|(JEG) (J�)⁄ | = |�(�� + �) �⁄ | � ∞ 

|(JEG) (J�)⁄ | =  0 � ∞ 

|(JEG) (J�)⁄ | = 0 � ∞. 

For EH: 

|(JEH) (J	)⁄ | =  0 � ∞ 

|(JEH) (J��)⁄ | = |�| � ∞ 

|(JEH) (J�)⁄ | = |−(� + � + ")| � ∞ 

|(JEH) (J�)⁄ | =  0 � ∞ 

|(JEH) (J�)⁄ | = 0 � ∞. 

For EI: 

|(JEI) (J	)⁄ | =  0 � ∞ 

|(JEI) (J��)⁄ | = |�| � ∞ 

|(JEI) (J�)⁄ | = |�| � ∞ 

|(JEI) (J�)⁄ | = |−(! + ")| � ∞ 

|(JEI) (J�)⁄ | = 0 � ∞. 

For E6: 

|(JE6) (J	)⁄ | =  0 � ∞ 

|(JE6) (J��)⁄ | = |�| � ∞ 

|(JE6) (J�)⁄ | = |�| � ∞ 

|(JE6) (J�)⁄ | =  0 � ∞ 

|(JE6) (J�)⁄ | = |−(! + ")| � ∞. 

Thus, all the partial derivatives (JEK) LJMNO,⁄  �, P =1, 2, 3, 4, 5 exist, continuous and bounded inΩ . Hence, by 

Derrick and Groosman theorem, a solution for the model (1) 

– (5) exists and is unique. 

Lemma 3 (Positivity) Solutions of the model equations (1) 

– (5) together with the initial conditions 	(0) > 0, ��(0) ≥
0, �(0) ≥ 0, �(0) ≥ 0, �(0) ≥ 0  are always positive (OR) 

the model variables 	(
), ��(
), �(
), �(
), and  �(
)  are 

positive for all 
 and will remain inℝ5
6 .  

Proof Positivity is verified separately for each of the model 

variables 	(
), ��(
), �(
), �(
), and �(
). 

Positivity of  	(
) : The model equation (1) given by 

*	 *
⁄ = Π − ��(�� + �) �⁄ + "�	 +  �  can be expressed 

without loss of generality, after eliminating the positive 
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terms�Π +  �) which are appearing on the right hand side, 

as an inequality as *	 *
⁄ ≥ −��(�� + �) �⁄ + "�	 . Using 

variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be 

obtained as  	(
) ≥ @ABCA(W X⁄ ) Y(Z[5Z\)]C . Recall that an 

exponential function is always non–negative irrespective of 

the sign of the exponent, i.e., the exponential 

function @ABCA(W X⁄ ) Y(Z[5Z\)]C  is a non-negative quantity. 

Hence, it can be concluded that 	(
) ≥ 0. 

Positivity of ��(
) : The model equation (2) given by 

*�� *
⁄ = �	 − (� + � + � + ")��  can be expressed without 

loss of generality, after eliminating the positive term ��(�� +
�)	�  which are appearing on the right hand side, as an 

inequality as *�� *
⁄ ≥ −(� + � + � + ")�� . Using variables 

separable method and on applying integration, the solution of 

the foregoing differentially inequality can be obtained 

as ��(
) ≥ @A(^5_5`5B)C. Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent, i.e., 

the exponential function @A(^5_5`5B)C  is a non-negative 

quantity. Hence, it can be concluded that��(
) ≥ 0.  

Positivity of �(
) : The model equation (3) given by 

*� *
⁄ = ��� − (� + � + ")�  can be expressed without 

loss of generality, after eliminating the positive term (���) 

which are appearing on the right hand side, as an inequality 

as *� *
⁄ ≥ −(� + � + ")� . Using variables separable 

method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as�(
) ≥
@A(a5b5B)C . Recall that an exponential function is always 

non–negative irrespective of the sign of the exponent, i.e., the 

exponential function @A(a5b5B)C  is a non-negative quantity. 

Hence, it can be concluded that�(
) ≥ 0.  

Positivity of  �(
) : The model equation (4) given by 

*� *
⁄ = ��� + �� − (! + ")�  can be expressed without 

loss of generality, after eliminating the positive term (��� +
��)  which are appearing on the right hand side, as an 

inequality as *� *
⁄ ≥ −(! + ")�. Using variables separable 

method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as �(
) ≥
@A(c5B)C. Recall that an exponential function is always non–

negative irrespective of the sign of the exponent, i.e., the 

exponential function @A(c5B)C  is a non-negative quantity. 

Hence, it can be concluded that �(
) ≥ 0. 

Positivity of  �(
) : The model equation (5) given by 

*� *
⁄ = ��� + �� − ( + ")� can be expressed without 

loss of generality, after eliminating the positive term 

(��� + ��) which are appearing on the right hand side, as 

an inequality as *� *
⁄ ≥ −( + ")� . Using variables 

separable method and on applying integration, the solution 

of the foregoing differentially inequality can be obtained 

as �(
) ≥ @A(d5B)C. Recall that an exponential function is 

always non–negative irrespective of the sign of the 

exponent, i.e., the exponential function @A(d5B)C is a non-

negative quantity. Hence, it can be concluded that �(
) ≥
0.  

Thus, the model variables 	(
), ��(
), �(
), �(
), and �(
) 

representing population sizes of various types of cells are 

positive quantities and will remain in ℝ5
6 for all 
. 

3.2. The Disease Free Equilibrium (DFE) 

Disease free equilibrium points are steady state solutions 

where there is no disease in the population. Absence of disease 

implies that ��(
) = �(
) = �(
) = �(
) = 0  and the 

equilibrium pointsrequire that the right hand sides of the model 

equationsset equal to zero. These requirements reflect in 

reducing the model equations (1) – (5) asΠ − (� + ")	 = 0  
giving 	� = Π (� + ")⁄ = (π μ⁄ ) where  � = �(�� + �) �⁄ =
�(0 + 0) �⁄ = 0. 

Thus, the disease-free equilibrium point of the model 

equation in (1) – (5) above is given by 

e� = f	�, ��
�, �

�, g� , ��h = 2(π μ⁄ ), 0, 0, 0, 0< 

3.3. The Basic Reproduction Number (ij) 

The basic reproduction number is denoted by �� and is 

defined as the expected number of people getting secondary 

infection among the whole susceptible population. It is 

computed using the next-generation matrix defined as in 

[15]. In this method ��is defined as the largest eigenvalue of 

the next generation matrix. Using the notation as in [15] for 

the model system (1) – (5) the associated matrices k and l 

for the new infectious terms and the remaining transition 

terms are respectively given by: 

kK = m
��(�� + �)	� �⁄

0
0

nandlK = o
(∈ +� + � + ")��

−��� + (� + � + ")�
−��� − �� + (! + ")�

p (7) 

The Jacobian matrices of  kK and lK at the disease free 

equilibrium point e�take the form respectively as 

k = m
� � 0
0 0 0
0 0 0

nandl = m
q 0 0

−� r 0
−� −� ?

n            (8) 

It can be verified that the matrixl is non-singular as its 

determinant *@
�l� = qr? is non-zero and after some 

algebraic computations its inverse matrix is constructed as 

lAF = o
(1 q⁄ � 0 0

(� qr⁄ ) (1 r⁄ � 0
�(�� + �r) "q⁄ � (� r?⁄ ) (1 ?⁄ �p 

The product of the matrices k and lAF can be computed as 

klAF � m� � 0
0 0 0
0 0 0

n o
(1 q⁄ � 0 0

(� qr⁄ ) (1 r⁄ � 0
�(�� + �r) "q⁄ � (� r?⁄ ) (1 ?⁄ �p

� m��� q⁄ � � ��� qr⁄ �� �� r⁄ � 0
0 0 0
0 0 0

n 

Now it is possible to calculate the eigenvalue to determine 

the basic reproduction number ��  by taking the spectral 

radius of the matrix  klAF . Thus, the eigenvalues are 

computed by evaluating*@
� klAF − ��� = 0 or equivalently 

solving 
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s��� q⁄ � � ��� qr⁄ �� , � �� r⁄ � 0
0 −� 0
0 0 −�

s = 0 

It reduces to the cubic equation for � as �Gt�(� q⁄ ) +
(�� qr⁄ )� − �u = 0  giving the three eigenvalues as �F =
�(� q⁄ ) + (�� qr⁄ )� , �G = 0, �H = 0 . However, the largest 

eigenvalue here is �F = �(� q⁄ ) + (�� qr⁄ )� and is the 

spectral radius as the threshold value or the basic 

reproductive number.  

Thus, it can be concluded that the reproduction number of 

the model is�� = ��(r + �) qr⁄ �. 

 

3.4. Stability Analysis of the Disease Free Equilibrium 

In absence of the infectious disease, the model populations 

have a unique disease free steady statee�. To find the local 

stability ofe�, the Jacobian of the model equations evaluated 

at DEF e�is used. Also, to determine the global stability ate� 

comparison theorem given in [16] is used. It is already shown 

that the DFE of model (1) – (5) is given by  e� =
2(v "⁄ ), 0, 0, 0, 0<. Now, the stability analysis of DEF 

is conducted and the results are presented in the form of 

theorems and proofs as follows: 

Theorem 1: The DFEe� of the system (1) – (5) is locally 

asymptotically stable if �� � 1 and unstable ifℜ� . 1. 

Proof: Jacobian matrix of �EF, EG, EH, EI, E6) with respect to 

(	, �� , � , �, �)is given by 

w =  

x
y
y
y
z−t��(�� + �) �⁄ � + "u −(�	 �⁄ ) −(�	 �⁄ ) 0  

��(�� + �) �⁄ � (�	 �⁄ ) − q (�	 �⁄ ) 0 0
0 � −r 0 0
0 � � −? 0
0 � � 0 −*{

|
|
|
}

                                     (9)

Therefore, the Jacobian matrixw of model at the disease 

free equilibrium e� reduces to  

w(e�) =

x
y
y
y
z
−" −� −� 0  
0 (� − q) � 0 0
0 � −r 0 0
0 � � −? 0
0 � � 0 −*{

|
|
|
}

 

Now, the eigenvalues ofw(e�) are required to be found. 

The characteristic equation *@
�w(e�) − ~�� = 0 is expanded 

and simplified as follows: 

�
�

−" − ~ −� −� 0  
0 (� − q) − ~ � 0 0
0 � −r − ~ 0 0
0 � � −? − ~ 0
0 � � 0 −* − ~

�
� = 0 

−(" + ~) �

(� − q) − ~ � 0 0
� −r − ~ 0 0
� � −? − ~ 0
� � 0 −* − ~

� = 0  

(" + ~)(* + ~) Ä
(� − q) − ~ � 0

� −r − ~ 0
� � −? − ~

Ä =0 

(" + ~)(* + ~)(−? − ~) Å
(� − q) − ~ �

� −r − ~Å = 

(" + ~)(* + ~)(−? − ~)�(� − q − �)(−r − �) − ��� = 0 

(" + ~)(* + ~)(−? − ~)�~G + (q + r − �)~ + qr(1, ℜ��� � 0 

(" + ~) = 0, (* + ~) = 0, (−? − ~)
= 0, ~G + (q + r − �)~ + qr(1 , ℜ��� 0 

Thus, the five eigenvalues of the matrix are determined as  

~F = −" 

~G = −* 

~H = −? 

~I =
−(q + r − �) + Ç(q + r − �)G − 4qr(1 , ���2  

~6 � ,�q � r , �� , ��q � r , ��G , 4qr�1 , ���2  

It can be observed that the first threeeigenvalues ~F , ~G and ~H are absolutely negative quantities. However, the 

remaining two ~I and ~6 are also negatives so long as the 

following restrictions on the parameters are valid:  qr(1 ,ℜ�� . 0  and (q + r − �)G > 2qr(1 , ℜ��  respectively, 

when �� � 1. 

Therefore, it is concluded that the DFEe� of the system of 

differential equations (1) – (5) is locally asymptotically stable 

if ℜ� < 1 and unstable if �� > 1. 

Theorem 2: The disease free equilibrium point  e� of the 

model is globally asymptotically stable if �� � 1  and 

unstable if �� > 1. 

Proof Using the comparison theorem as given in [16], the 

rate of change of the variables representing the disease 

classes of the model can be rewritten as  

o�������p � �k , l� m���� n , �� m���� n                (10) 

Here in (10), the matrices k  and l  at the disease free 

equilibrium e� are defined as 
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k � m� � 0
0 0 0
0 0 0

nandl = m
q 0 0

−� r 0
−� −� ?

n 

Also, and Ö is non-negative matrix. However, Ñ =
�1 , �	� ��⁄ �� � 0  since 	� = (v "⁄ ) and �� = (v "⁄ ) . 

Therefore, the equation (10) reduces to the simplified form as 

o
��

É

�
É

��
p ≤ (k − l) m

��
�
�

n 

Now, (k − l) can be computed as 

k − l = m
� � 0
0 0 0
0 0 0

n − m
q 0 0

−� r 0
−� −� ?

n = m
� − q � 0

� −r 0
� � −?

n (11) 

Next, elementary row-operations are used to row-reduce 

the matrix in (11) to a lower triangular as in(12). 

k − l = m
��� + r(� − q)� 0 0

� −r 0
� � −?

n             (12) 

The eigenvalues of matrix (12) are found by evaluating the 

characteristic equationdet�(k − l) − ~�� = 0 as follows: 

Ä
��� + r(� − q)� − ~ 0 0

� −r − ~ 0
� � −? − ~

Ä = 0 

t��� + r(� − q)� − ~u(−r − ~)(−? − ~) = 0 

(−r − ~) = 0, (−? − ~) = 0, t��� + r(� − q)� − ~u = 0 

~F = −r, ~G = −?, ~H = ��� + r(� − q)� = qr��� − 1� 
The notations a, b and c have been defined earlier. Here it 

can be observed that the first twoeigenvalues~F , and~Gare 

absolutely negative quantities. However, the remaining 

eigenvalue ~H is also negativewhen ℜ� < 1 . Hence, the 

disease free equilibrium point e�  is globally asymptotically 

stable if ℜ� < 1 and unstable if�� > 1. 

3.5. The Endemic Equilibrium 

Endemic equilibrium point eF  is a steady state solution 

where the disease persists in the population. For the existence 

and uniqueness of endemic equilibrium eF � 2	∗, ��
∗ , �

∗,�∗, �∗<, its coordinates should satisfy the 

conditions eF = 2	∗, ��
∗ , �

∗,�∗, �∗< ≠ 0 , where 	∗ >
0, ��

∗ > 0, �
∗ > 0, �∗ > 0 and �∗ > 0 . The endemic 

equilibrium point is obtained by setting left hand sides of 

equations of the system (1) – (5) to zero. Then solved for 

state variables interms of the force of infection, �∗and obtain 

the following; 

	∗ = (qr*Π) �qr*(�∗ + ") − �∗ (r� + ��)�⁄  

��
∗ = (r*Πλ∗) �qr*(�∗ + ") − �∗ (r� + ��)�⁄  

�
∗ = (*�Πλ∗) �qr*(�∗ + ") − �∗ (r� + ��)�⁄  

�∗ = ��Π�∗(�r + ��)� �qr?*(�∗ + ") − ?�∗ (r� + ��)�⁄  

�∗ = �Π�∗(�r + ��)� �qr*(�∗ + ") − �∗ (r� + ��)�⁄  

Hereq = � + � + � + ",r = � + � + ",? = ! + " 

and* =  + ". 

On substituting the expression for ��
∗  and �

∗ into the force 

of infection, that is, �∗ = ��(��
∗ + ��

∗)� �⁄ , characteristic 

polynomial of force of infection isobtainedas  

ä(�∗) = ãF�∗ + ãG 

Here ãF = qr* −  (r� + ��)andãG = "qr*(1 , ℜ��. 

Clearly, �F . 0  and ãG ≥ 0 , when �� � 1  and �∗ �,�G �F⁄ 9 0. From this, we see that, for �� � 1, there is no 

endemic equilibrium for this model. 

Lemma 4: A unique endemic equilibrium point e∗ exists 

and is positive if �� > 1. 

4. Numerical Simulation 
In this section, the numerical simulation study of model 

equations (1) – (5) is carried out using the software DE Discover 

2.6.4. To conduct the study, a set of meaningful values are 

assigned to the model parameters. These values are either taken 

from literature or assumed. Using the parameter values given in 

Table 3 and the initial conditions 	�0) = 150000, ��(0) =
50000, �(0) = 30000, �(0) = 12500 and�(0) = 26250 in 

the model equations (1) – (5) a simulation study is conducted 

and the results are given in Figures 2 and 3. 

Table 3. Parameter values used in Numerical Simulations. 

Parameter Value Reference 
Π  175 assumed 

"  0.1 assumed 

�  0.3 assumed 

   0.2 assumed 

�  1.6 assumed 

!  0.03 assumed 

�  0.3 assumed 

�  0.15 assumed 

�  0.6 assumed 

�  0.04 assumed 

Due to the presence of interventions, the number of 

susceptible cells decreases implying that, most of the 

susceptible cells are screened. Similarly, the number of 

unaware infected cells decreases. This happens because 

unaware cells become aware after screening. The screened 

infected cells initially increase and then start to diminish after 

the equilibrium point. This is because many people from 

screened class recovered through treatment. Also, the number 

of cells with cancer decreases and this may be due to disease 

induced death. Furthermore, the number of recovered cells 

increases because there are two ways of recovering, through 

immune system or treatment. With ℜ�=0.5677, implies that 

screening can reduce the transmission of the disease in the 

population when ℜ� < 1. 
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Figure 2. Simulation results grouped by parameter sets (combined of 	, �� , � , �, �). 

 
Figure 3. Simulation results grouped by variables (	, �� , �, �, �). 
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5. Sensitivity Analysis of Model 

Parameters 
We carried out sensitivity analysis in order to determine 

the relative significance of modelparameters on disease 

transmission. The analysis will enable us to find out 

parametersthat have high impact on the basic reproduction 

number and which should be targetedby intervention 

strategies. We perform sensitivity analysis by calculating the 

sensitivityindices of the basic reproduction number ℜ� in 

order to determine whether HPV canbe spread in the 

population or not. These indices tell us how crucial each 

parameter is onthe transmission of the HPV. To investigate 

which parameters in the model system (1) – (5) have high 

impact on theℜ�, we apply the approach presented by [15]. 

The explicit expression of ℜ� is given by ℜ� ����r � �� qr⁄ �. Since ℜ� depends only on seven parameters, 

we derive an analytical expression for its sensitivity to each 

parameter using the normalized forward sensitivity index as 

by Chitnis [17] as follows: 

ΥW�� � �J�� �⁄ � × �� ��⁄ � � 1 

Υ_�� � �J�� �⁄ � × �� ��⁄ �� ��q�� � � � " � 1� , ?�� � � � " � 1�� �q?�⁄  

ΥB�� � �J�� "⁄ � × �" ��⁄ �� "�qr�� � � � � � 1� , �q?�� � � � 1� � r?�� � � � � � 1��� �qr?�⁄  

Υa�� � �J�� �⁄ � × �� ��⁄ �� ��r�� � � � " � 1� , ?�� � " � 1�� �r?�⁄  

Υb�� � �J�� �⁄ � × �� ��⁄ �� ��r�� � � � " � 1� , ?�� � " � 1�� �r?�⁄  

Υ̂�� � �J�� �⁄ � × �� ��⁄ � � ���� � � � " � 1�� �q�⁄  

Ὺ�� � �J�� �⁄ � × �� ��⁄ � � ���� � � � " � 1�� �q�⁄  

Table 4. Sensitivity indices. 

Parameter Symbol Sensitivity indices �  +1 �  0.6979 �  0.2020 �  -0.3743 "  -0.2972 �  -0.0787 �  -0.0684 

The sensitivity indices of the basic reproductive number 

with respect to main parameters are arranged orderly in Table 

4. Those parameters that have positive indices i.e.�, �and� 

show that they have great impact on expanding the disease in 

the community if their values are increasing. Due to the 

reason that the basic reproduction number increases as their 

values increase, it means that the average number 

ofsecondary cases of infection increases in the community. 

Furthermore, those parameters in which their sensitivity 

indices are negative i.e. �, ", � and �  have an influence of 

minimizing the burden of the disease in the community as 

their values increase while the others areleft constant. And 

also as their values increase, the basic reproduction number 

decreases, which leads to minimizing the endemic nature of 

the disease in the community. 

6. Result and Discussion 
In this paper we have studied the impact of screening as 

control strategies against the transmission dynamics of HPV 

infection. The model analysis showed that there exists a 

domain where the model is epidemiologically and 

mathematically well-posed. We have established two distinct 

equilibriums for the model with both local and global 

stability on the disease-free equilibrium. The threshold 

parameter that governs the disease transmission was 

computed using next generation matrix. Then the model was 

analyzed qualitatively for the existence and stability of 

disease free and endemic equilibrium. It was proved that the 

disease free equilibrium is both locally and globally 

asymptotically stable under certain conditions. 

Numerical simulation carried out on the model revealed 

that, screened infected and recovered cells grows 

exponentially in which, after reaching equilibrium level, 

started dying out and became asymptotic to zero. The 

increase in both the screened infected and recovered cells 

aroused from the screening program and the treatment 

intervention proposed in this model on the susceptible cells 

and cancer cells. Also, both unaware infected cells and 

cancer cells died out exponentially with smooth curve 

overtime and became asymptotic to zero with screening 

program and treatment interventions in the population. 

Furthermore, in the absence of the HPV infection and cancer 

cells, the population of susceptible cells grows up to 

equilibrium level, achieved asymptotic stability and did not 

die out over time with the same proposed interventions in the 

model.  

7. Conclusion and Recommendation 
In this study, we formulated a mathematical model on the 

transmission dynamics of the HPV infection cancer by 

incorporating the combined effects of screening and 

treatment. Moreover, existence, positivity and boundedness 

of the formulated model are verified to illustrate that the 

model is biologically meaningful and mathematically well 

posed. In particular, the stability analyses of the model were 

investigated using the basic reproduction number. And also, 

the solution of the model equation is numerically 

supplementedandsensitivity analysis of the model is analyzed 

to determine which parameter has high impact on the 

transmission of diseases. 

Although eradication of HPV infection remain a 

challenge especially in developing countries, but from 

results of this study we recommend that, the government 

should introduce education programmers on the 
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importance of voluntary and routinely screening on HPV 

infection. Also, there is need to increase the number of 

hospitals to deal with HPV infection as well as cancers to 

ensure that, many people have access to the facilities, 

because HPV infection in long run results into different 

types of human cancers which pose serious health problem. 

Moreover, the future work should consider; incorporating 

asymptomatic and screening against HPV transmission 

dynamics in the model. 
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