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Abstract: Mathematics has a great variety of applications in the physical sciences. This simple, undeniable fact, however, 
gives rise to an interesting philosophical problem: why should physical scientists find that they are unable to even state 
their theories without the resources of abstract mathematical theories? Moreover, the formulation of physical theories in the 
language of mathematics often leads to new physical predictions which were quite unexpected on purely physical grounds. 
It is thought by some that the puzzles the applications of mathematics present are artefacts of out-dated philosophical 
theories about the nature of mathematics. In this paper I examine numerical analysis what precisely it is and why it is 
important. I begin by presenting a selective conceptual reconstruction of one suggestive line in its historical development. 
Then expand my focus to a general account of what numerical analysis consists today. 
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1. Introduction 

Numerical analysis studies the means of obtaining 
numerical results for mathematical expressions: Numerical 
methods are used ingeniously and indirectly to arrive at the 
actual numbers implied by a formal solution. While 
contemporary numerical analysis is inextricably wed to the 
computer, numerical analysis has its origins in the early 
16th century’s development of tables of logarithms 
(Goldstine) which saw mathematicians working to develop 
the means of generating these tables in increasingly clever 
and indirect ways in order to avoid cumbersome hand 
calculations. Logarithms were being used as tools to 
perform what would have been prohibitively difficult 
calculations especially in navigation and calculating 
interest. While it is Napier and Burgi who typically get the 
lion share of credit for developing logarithms, it was Henry 
Briggs (1556–1630) who in extending their work, 
discovered numerical techniques that persist today. 
Practically any use of mathematics beyond counting 
involves numerical analysis. This mathematics is often 
hidden because it is embedded in the calculators, 
processors, and other computing machinery used to 
generate the numerical solutions.1 Although the application 
of numerical analysis is rarely seen, it is essential to 

prediction, confirmation, and even explanation in science, 
as well as in any other setting in which the mathematics 
involved goes beyond arithmetic including a calcula-tor 
and its square root function, the calculation of which bear 
not the slightest resemblance to the hand algorithm taught 
in grade school. 

Numerical analysis involves using mathematical 
techniques to generate numerical solutions to mathematical 
expressions. If, for example, you used math to determine 
that you need to build a wall that is √2 meters long, you 
probably used trigonometry and/or calculus. If you go on to 
actually find the value of √2 to nine decimal places, and 
then you used numerical analysis. The modern theory of 
numerical analysis includes developing numerical methods, 
but it also seeks to ground the techniques in theory to 
establish why they work, how accurately, how generally, 
and how robustly. It works to develop the means of 
generating numerical solutions not just too simple 
expressions like 2 but also to problems on the cutting edge 
of science and engineering 

2. Historical Background 

Numerical algorithms are almost as old as human 
civilization. The Rhind Papyrus (˜1650 BC) of ancient 
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Egypt describes a root finding method for solving a simple 
equation; see [1]. Archimedes of Syracuse (287-212 BC) 
created much new mathematics, including the “method of 
exhaustion” for calculating lengths, areas, and volumes of 
geometric figures; see [2]. When used as a method to find 
approximations, it is in much the spirit of modern 
numerical integration; and it was an important precursor to 
the development of the calculus by Isaac Newton and 
Gottfried Leibnitz. A major impetus to developing 
numerical procedures was the invention of the calculus by 
Newton and Leibnitz, as this led to accurate mathematical 
models for physical reality, first in the physical sciences 
and eventually in the other sciences, engineering, medicine, 
and business. These mathematical models cannot usually be 
solved explicitly, and numerical methods to obtain 
approximate solutions are needed. Another important 
aspect of the development of numerical methods was the 
creation of logarithms by Napier (1614) and others, giving 
a much simpler manner of carrying out the arithmetic 
operations of multiplication, division, and exponentiation. 
Newton created a number of numerical methods for solving 
a variety of problems, and his name is attached today to 
generalizations of his original ideas. Of special note is his 
work on root finding and polynomial interpolation. 
Following Newton, many of the giants of mathematics of 
the 18th and 19th centuries made major contributions to the 
numerical solution of mathematical problems. Foremost 
among these are Leonhard Euler (1707-1783), 
Joseph-Louis Lagrange (1736-1813), and Karl Friedrich 
Gauss (1777-1855). Up to the late 1800’s, it appears that 
most mathematicians were quite. 

3. Common Perspectives in Numerical 
Analysis 

Numerical analysis is concerned with all aspects of the 
numerical solution of a problem, from the theoretical 
development and understanding of numerical methods to 
their practical implementation as reliable and efficient 
computer programs. Most numerical analysts specialize in 
small sub-areas, but they share some common concerns, 
perspectives, and mathematical methods of analysis. These 
include the following. 

1. When presented with a problem that cannot be solved 
directly, then replace it with a “nearby problem” which can 
be solved more easily. Examples are the use of 
interpolation in developing numerical integration methods 
and root finding methods; [3]. 

2. There is widespread use of the language and results of 
linear algebra, real analysis, and functional analysis (with 
its simplifying notation of norms, vector spaces, and 
operators). [4]. 

3. There is a fundamental concern with error, its size, and 
its analytic form. When approximating a problem, as above 
in item 1, it is prudent to understand the nature of the error in 
the computed solution. Moreover, understanding the form of 
the error allows creation of extrapolation processes to 

improve the convergence behavior of the numerical method. 

4. Effects of Computer Hardware 

First and foremost, the computer arithmetic must be 
understood. Historically, computer arithmetic varied greatly 
between different computer manufacturers, and this was a 
source of many problems when attempting to write 
software which could be easily ported between different 
computers. This has been lessoned significantly with the 
development of the IEEE (Institute for Electrical and 
Electronic Engineering) standard for computer 
floating-point arithmetic. All small computers have adopted 
this standard, and larger computer manufacturers have done 
so as well. For a discussion of the standard and of computer 
floating-point arithmetic in general see [5]. For large scale 
problems, especially in numerical linear algebra, it is 
important to know how the elements of an array A or a 
vector x are stored in memory. Knowing this can lead to 
much faster transfer of numbers from the memory into the 
arithmetic registers of the computer, thus leading to faster 
programs. A somewhat related topic is that of pipelining. 
This is a widely used technique whereby the execution of 
computer operations are overlapped, leading to faster 
execution. Machines with the same basic clock speed can 
have very different program execution times due to 
differences in pipelining and differences in the way 
memory is accessed. Most present-day computers are 
sequential in their operation, but parallel computers are 
being used ever more widely. Some parallel computers 
have independent processors that all access the same 
computer memory (shared memory parallel computers), 
whereas other parallel computers have separate memory for 
each processor (distributed memory parallel computers). 
Another form of parallelism is the use of pipelining of 
vector arithmetic operations. Some parallel machines are a 
combination of some or all of these patterns of memory 
storage and pipelining. With all parallel machines, the form 
of a numerical algorithm must be changed in order to make 
best use of the parallelism for examples of this in numerical 
linear algebra [6]. 

5. Nonlinear Differential and Integral 

Equations 

Within recent years interest in nonlinear equations has 
grown enormously. They are extremely important as basic 
equations in many areas of mathematical physics, and they 
have received renewed attention because of progress in their 
solution by machines. This volume undertakes a definition 
of the field, indicating advances that have been made up 
through 1960. The author's position is that while the advent 
of machines has resulted in much new knowledge, one 
should not disregard analytical methods, since the solution 
of nonlinear equations possesses singularities which only the 
analytical method (as based upon the work of Poincare, 
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Liapounoff, Pain eve and Goursatl can discover. 
After a general survey of the problem presented by nonlinear 
equations, the author discusses the differential equation of 
the first order, following this by chapters on the Riccati 
equation (as a bridge between linear and nonlinear equations) 
and existence theorems, with special reference to Cauchy's 
method. Second order equations are introduced via 
Volterra's problem and the problem of pursuit, and 
succeeding chapters cover elliptic integrals and functions 
and theta functions; differential equations of the second 
order; and second order differential equations of the 
polynomial class, with special reference to Painleve 
transcendent. The technique of continuous analytical 
continuation is shown, while phenomena of the phase plane 
are studied as an introduction to nonlinear mechanics. 
Nonlinear 111echanics is then discussed, with various 
classical equations like Van der Pol's equations, Emden's 
equation, and the Duffing problem. The remaining chapters 
are concerned with nonlinear integral equations, problems 
from the calculus of variations, and numerical integration of 
nonlinear equations. Throughout the book the results of 
distinguished analysis of the past and modern machine 
computations are both taken into account. Despite the 
thoroughness of its coverage this is a very fine introduction 
to this important area of mathematics, and it can easily be 
followed by the mathematically sophisticated reader who 
knows very little about nonlinear equations for example: 
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6. Method for Ordinary Differential 

Equations 

This part will introduce the reader to the terminology and 
notation of differential equations. Students will also be 
reminded of some of the elementary solution methods they 
are assumed to have encountered in an undergraduate course 
on the subject. At the conclusion of this review one should 
have an idea of what it means to ‘solve’ a differential 
equation and some confidence that they could construct a 
solution to some simple and special types of differential 
equations for example: 
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the equations say that each and every one square homepage. 
Obviously, each of the above equations, the kernel and the 
function y (t) are known such as: 
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Therefore, we consider the following differential general 
form of an equation integral: 
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7. The Feather of Numerical Analysis 

Having discussed what animates a small corner of 
numerical analysis, how it developed, and some of its 
activities, methods, and concepts, I now consider how the 
field of numerical analysis unfolds into areas beyond 
calculating square roots. A standard introduction to 
numerical analysis will begin with methods of solving 
equations in one variable that is, finding the x’s, such that 
ƒ(x )= o Now as we’ve seen, the problem of calculating a 
square root can be transformed into just such a problem, 
and as you may imagine, so can many others. The methods 
of solving these equations of one variable get more and 
more specialized and powerful, and typically the more 
narrowly one focuses on such a problem, the more efficient 
the methods get. For example, if one assumes that the 
function is a polynomial, then the methods available are 
extremely efficient and stable. Another cottage industry in 
numerical analysis is the problem of approximating a 
function for which one knows only a few of its values. 
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Typically one does this by determining a “well-behaved” 
function (like a polynomial) that hits all the known data 
points and then uses this function to estimate unknown data 
points. This area is known as polynomial approximation 
and interpolation. Again it generalizes to more general 
approximation techniques, including using least square 
methods, orthogonal polynomials, rational functions, and 
trigonometric polynomials by way of Fourier 
transformations. The problems of integration and 
differentiation are also mainstays of numerical analysis. For 
any of the real world problems that are solved by calculus 
(characterized by the operations of differentiation and 
integration), in order to actually use the solution, numerical 
results will be needed. Again such methods begin with 
well-behaved functions of one variable and branch out from 
there to very complicated functions of multiple variables. 
In the case of both, the crucial tools are classes of 
“well-behaved” functions like the polynomials. It can be 
proven that for any continuous function of interest, a 
polynomial can be found that is arbitrarily close to the 
function of interest at every point in a closed interval. So to 
get a numerical result of a given accuracy to a definite 
integral or a derivative of a function at a point, one 
generates an appropriately close polynomial and then treats 
it as the function of interest to differentiate or integrate. 
Numerical analysis is further used to prove results 
concerning error bounds on the difference between the 
actual and approximate values. Another important area of 
inquiry concerns how to best choose the original data 
points by which to generate the approximating function. 
Adaptive quadrature methods chose the location and 
density of such node points by analyzing the functional 
variation and using more nodes in regions of higher 
variation. 

8. Numerical Analysis as Applied 
Mathematics 

In the times of Briggs, Newton, and Bolzano (to name a 
few) the relationship between the formal analytic problems 
and the numerical were still being worked out. In the 
wonderful stewpot that was mathematics from the 16th 
century on, we see the concurrent development of formal 
notation, logical foundations, analysis, and the topology of 
the real numbers, which are precisely the theoretical 
underpinnings of contemporary numerical analysis. In this 
period numerical concerns were naturally quite visible. I’d 
like to suggest that some of this persists today. Let me offer 
the following three rough and ready ways in which 
numerical analysis functions in scientific application to 
draw this out. Instrumental Exact solutions are available, 
e.g., finding the zeros of a complicated polynomial. 
Essential No exact solution is available (even in principle), 
e.g., certain differential equations. Explanatory/exploratory 

the problem is sufficiently complicated that the relationship 
between the formal mathematical and the numerical is not 
understood, e.g., general relativity theory. The first role is 

instrumental in that a closed exact solution is known and 
the numerical methods are used only to “do the 
calculations.” Imagine an engineer needing to find the 
zeros of a complicated cubic polynomial—messy work, but 
work that could be done without numerical analysis. Things 
get a bit fuzzier when one has a simple first order 
homogenous differential equation that has a trigonometric 
solution: 

Obtaining the exact solution requires no numerical 
analysis, but evaluating the trigonometric solution at values 
of interest does. But more often than not, even in 
well-understood settings, exact solutions are unavailable. In 
this case the role of numerical analysis is essential.4 
Consider something as straightforward as a second-order 
differential equation with initial values (a so called “initial 
value problem”). Such a problem might arise in the 
modeling of the efficacy of the brakes of a car, taking into 
account wind resistance and friction. When exact solutions 
are not available (as they mostly are not), then the only way 
to 

[1]. Confirm that the differential equation models the 
braking situation and 

[2]. Make use of the differential equation to determine a 
breaking distance is by way of numerical analysis and its 
highly theoretical grounding in pure mathematics. 
Nonetheless, the numerical analysis required to perform (1) 
and (2) is understood to the point that it now covered in 
“first courses” in numerical analysis. So while essential, 
these applications of numerical analysis are so routine as to 
be “invisible.” The third explanatory/exploratory way is 
important here because numerical analysis applications of 
this kind are clearly not invisible in any sense. These are 
examples in which the applied mathematical model and its 
analytic solutions are sufficiently complicated that the 
relationship between the mathematical model and 
numerical results are not understood very well at all. 
Examples like this seem to be present in general relativity, 
quantum mechanics, and even some classical systems that 
are chaotic or Brownian. For example, in the study of the 
dynamics of deterministic systems using differential 
equations, the numerical methods are well understood. It 
turns out, however, that most real phenomena have a 
stochastic or random component; the mathematical tools 
used to describe such stochastic dynamics are stochastic 
differential equations. In the period before the rigorous 
formalization of mathematics, perhaps as far back as 
Babylonia through the early 17th century (the cut off here 
is somewhat arbitrary); it is rather anachronistic to interpret 
any of the work being done as numerical analysis. To be 
sure much of this early work was foundational for 
numerical analysis but only because it was foundational for 
the rigorous formal axiomatic mathematics we have today. 
Prior to the formal development of analysis, while one can 
point out mathematical work on numerical techniques, 
properly speak 348. Anthony F. Peressiniing, no numerical 
analysis was being done since the means of comparing and 
classifying convergence rates and error analysis were not 
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available. During this period (and ensuing periods leading 
to modern numerical analysis) the visibility of work on 
numerical methods was pervasive due to its being explored 
concurrently with the development of analysis in general. 
In contrast, contemporary numerical analysis’ visibility is 
limited largely (as we have seen) to its 
explanatory/exploratory role in scientific application. In the 
instrumental and even essential roles characterized above, 
its invisibility is due to the numerical tractability of the 
theory employing numerical analysis. In such settings, the 
numerical landscape is charted and it can fade invisibly into 
the background. In other application settings, ones that are 
numerically problematic, numerical analysis plays an active 
and visible role. This difference in the visibility and role of 
contemporary numerical work in mathematics grew out of 
two distinct (though perhaps not independent) 
developments: the modern formalization of analysis and the 
advent of the computer. Once in place, these two 
developments allowed the three roles of numerical analysis 
described above to coalesce into more or less the form we 
find them in now. 

9. Conclusion 

This paper included analysis of applied mathematics & 
analysis numerical. In contrast, contemporary numerical 
analysis’ visibility is limited largely (as we have seen) to its 
explanatory/exploratory role in scientific application. In the 
instrumental and even essential roles characterized above, 
its invisibility is due to the numerical tractability of the 
theory employing numerical analysis. In such settings, the 

numerical landscape is charted and it can fade invisibly into 
the background. In other application settings, ones that are 
numerically problematic, numerical analysis plays an active 
and visible role. This difference in the visibility and role of 
contemporary numerical work in mathematics grew out of 
two distinct (though perhaps not independent) 
developments: the modern formalization of analysis and the 
advent of the computer. Once in place, these two 
developments allowed the three roles of numerical analysis 
described above to coalesce into more or less the form we 
find them in now. 
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