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Abstract: Mixed convection flow and heat transfer in a vertical channel filled with composite porous medium using 

Robin boundary conditions is analyzed. The flow is modeled using the Darcy-Lapwood-Brinkman model. The viscous and 

Darcy dissipation terms are included in energy equation. The plate exchanges heat with an external fluid. Both the 

conditions of equal and different reference temperature of the external fluid are considered. The governing equations are 

coupled and non-linear because of inclusion of dissipation terms and buoyancy forces. The equations are solved using 

perturbation method valid for small values of perturbation parameter. However, the restriction on the perturbation 

parameter is relaxed by finding the solutions of governing equations by using Differential Transform Method. The effects 

of various parameters such as mixed convection parameter, porous parameter, viscosity ratio, width ratio, conductivity ratio 

and the Biot numbers on the flow are discussed. The percentage of error between perturbation method and differential 

transformation method increases as the perturbation parameter increases for both equal and unequal Biot numbers. 

Keywords: Mixed Convection, Composite Porous Medium, Perturbation Method, Differential Transform Method,  

Robin Boundary Condition 

 

1. Introduction 

Convective heat transfer in closed conduits partially 

filled with a porous medium is of essential importance to a 

variety of engineering applications including solar 

collectors, micro scale channels for cooling electronic 

components, nuclear reactors, chemical catalytic reactors, 

thermal insulation, and heat pipes. In the past decade, this 

importance has attracted substantial analytical studies. The 

flow and heat transfer aspects of immiscible fluids is of 

special importance in petroleum extraction and transport. 

For example, the reservoir rock of oil always contains 

several immiscible fluids in its pores. Part of the pore 

volume is occupied by water and the rest may be occupied 

either by oil or gas or both. These examples show the 

importance of knowledge of the laws governing immiscible 

multi-phase flows for proper understanding of the 

processes involved. The subject of two-fluid flow and heat 

transfer has been extensively studied due to its importance 

in chemical and nuclear industries. Identification of the 

two-fluid flow region and determination of the pressure 

drop, void fraction, quality reaction and two-fluid heat 

transfer coefficient are of great importance for the design of 

two-fluid systems. In modeling such problems, the 

presence of a second immiscible fluid phase adds a number 

of complexities as to the nature of interacting transport 

phenomena and interface conditions between the faces. 

The work of Beavers and Joseph [1] was one of the first 

attempts to study the fluid flow boundary conditions at the 

interface region. They performed experiments and detected 

a slip in the velocity at the interface. Neale and Nadar [2] 

presented one of the earlier attempts regarding this type of 

boundary condition in porous medium. In this study, the 

authors proposed continuity in both the velocity and the 

velocity gradient at the interface by introducing the 

Brinkman term in the momentum equation for the porous 

side. Vafai and Kim [3] presented an exact solution for the 

fluid flow at the interface between a porous medium and a 

fluid layer including the inertia and boundary effects. In 
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this study, the shear-stress in the fluid and the porous 

medium were taken to be equal at the interface region. 

Vafai and Thiyagaraja [4] analytically studied the fluid flow 

and heat transfer for three types of interfaces, namely, the 

interface between two different porous media, the interface 

separating a porous medium from a fluid region and the 

interface between a porous medium and an impermeable 

medium. Continuity of shear stress and heat flux were 

taken into account in their study while employing the 

Forchheimer-extended Darcy equation in their analysis. 

Other studies considered the same set of boundary 

conditions for the fluid flow and heat transfer used in Vafai 

and Thiyagaraja [4] such as Vafai and Kim [5], Kim and 

Choi [6], Poulikakos and Kazmierczak [7] and Ochoa and 

Whitaker [8]. 

Forced convection in composite channels is a subject of 

intensive investigation. This is due to rapid development of 

technology and numerous modern thermal applications 

relevant to this area, such as cooling of micro-electronic 

devices. Some novel designs of heat sinks for cooling 

micro-electronic devices utilize highly porous materials, 

such as aluminum foam [9]. Poulikakos and Kazmierczak 

[7] presented analytical solutions for forced convection 

flow in ducts where the central part is occupied by clear 

fluid and the peripheral part is occupied by a Brinkman-

Darcy fluid saturated porous medium. The results of 

Poulikakos and Kazmierczak [7] were extended by 

Kuznetsov [10] to account for the Forchheimer (quadratic 

drag) effects. Nield and Kuznetsov [11]) considered a 

forced convection problem in a channel whose centre is 

occupied by a layer of isotropic porous medium and whose 

peripheral part is occupied by another layer of isotropic 

porous medium, each of the layers with its own 

permeability and thermal conductivity. They utilized the 

Darcy law for the flow in porous layers. Malashetty et al. 

[12,13] studied mixed convection in an inclined channel 

containing porous medium for immiscible fluids. Umavathi 

et al. [14-16] studied the flow and heat transfer in a 

composite channel. Recently, Prathap Kumar et al. [17,18] 

studied fully developed mixed convection flow in a vertical 

channel for composite porous medium for symmetric and 

asymmetric wall heating conditions. 

In the past, the laminar forced convection heat transfer in 

the thermal entrance region of a rectangular channel has 

been analyzed either for the temperature boundary 

condition of the first kind, characterized by prescribed wall 

temperature [19-21] or for the boundary conditions of 

second kind, expressed by the prescribed wall heat flux 

[22,23]. A more realistic condition in many applications, 

however, will be temperature boundary conditions of third 

kind: the local wall heat flux is a linear function of the local 

temperature. Heat transfer in laminar region of a flat 

channel for the temperature boundary condition of third 

kind was explored by Javeri [24]. Javeri [25] investigated 

the influence of the temperature boundary condition of the 

third kind on the laminar heat transfer in the thermal 

entrance region of a rectangular channel. Later Zanchini 

[26] analyzed the effect of viscous dissipation on mixed 

convection in a vertical channel with boundary conditions 

of third kind. Kumari and Nath [27] analyzed the effects of 

localized cooling/heating and injection/suction on mixed 

convection flow on a thin vertical cylinder. 

The differential transformation method (DTM) was first 

applied in the engineering domain by Zhou [28]. The 

differential transform method is based on Taylor expansion. 

It constructs an analytical solution in the form of a 

polynomial. It is different from the traditional high order 

Taylor series method, which requires symbolic computation 

of the necessary derivatives of the data functions. The 

Taylor series method is computationally taken long time for 

large orders. The differential transform is an iterative 

procedure for obtaining analytic Taylor series solutions of 

differential equations. DTM has been successfully applied 

to solve many nonlinear problems arising in engineering, 

physics, mechanics, biology, etc. The differential transform 

method can overcome the restrictions and limitations of 

perturbation techniques so that it provides us with a 

possibility to analyze strongly nonlinear problems. Jang et 

al. [29] applied the two-dimensional differential transform 

method to the solution of partial differential equations. 

Kurnaz and Oturanç [30] applied DTM for solution of 

system of ordinary differential equations. Arikoglu and 

Ozkol [31] employed DTM on differential-difference 

equations. Ravi Kanth and Aruna [32] found the solution of 

singular two-point boundary value problems using 

differential transformation method. The method was 

successfully applied to various application problems [33-

35]. Very recently Rashidi et al. [36] applied the DTM to 

obtain approximate analytical solutions of combined free 

and forced (mixed) convection about inclined surfaces in a 

saturated porous medium. 

Based on our review, a study on composite porous layer 

for mixed convection flow in a vertical channel with Robin 

boundary conditions is not found in the literature. Thus we 

concentrate on the case of mixed convection flow through a 

channel confined by parallel plate wall for composite 

porous matrix using Robin boundary conditions. 

2. Mathematical Formulation 

The geometry under consideration illustrated in figure. 1 

consists of two infinite parallel plates maintained at equal 

or different constant temperatures extending in the X  and 

Z  directions. The region 1 2 0h Y− ≤ ≤  is occupied by a 

fluid-saturated porous medium of permeability 
1

κ , density 

1
ρ , viscosity 

1
µ , thermal conductivity 

1
k , and thermal 

expansion coefficient 
1

β , and the region 20 2Y h≤ ≤
 
is 

occupied by another porous medium of permeability 
2

κ , 

density 
2

ρ , viscosity 
2

µ , thermal conductivity 
2

k , and 

thermal expansion coefficient 
2

β . The fluids are assumed 

to have constant properties except the density in the 

buoyancy term in the momentum equation 
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( )1 0 1 1 01 T Tρ ρ β= − −    and ( )2 0 2 2 01 T Tρ ρ β= − −   . A fluid 

rises in the channel driven by buoyancy forces. The 

transport properties of both fluids are assumed to be 

constant.  

 

Fig 1: Physical configuration  

We consider the fluids to be incompressible and the flow 

is steady, laminar, and fully developed. It is assumed that 

the only non-zero component of the velocity q
�

 are the X-

component ( 1,2)
i

U i = . Thus, as a consequence of the mass 

balance equation, one obtains 

0iU

X

∂
=

∂
                                       (1) 

so that iU depends only on Y . The stream wise and the 

transverse momentum balance equations yields 

( )
2

1 1
1 1 0 1 12

1 1

1
0

d UP
g T T U

X dY

νβ ν
ρ κ

∂− − + − =
∂

             (2) 

Region-II 

( )
2

2 2
2 2 0 2 22

2 2

1
0

d UP
g T T U

X dY

νβ ν
ρ κ

∂− − + − =
∂

          (3) 

and Y -momentum balance equation in both the regions 

can be expressed as 

0
P

Y

∂ =
∂

                                       (4) 

where 0P p gxρ= + (assuming 1 2p p p= = ) is the 

difference between the pressure and hydrostatic pressure. 

On account of (4) P depends only on X so that (2) and (3) 

can be rewritten as 

Region-I 

2

1 1 1
1 0 12

1 1 1 1 1

1 d UdP
T T U

g dX g gdY

ν ν
β ρ β β κ

− = − +              (5) 

Region-II 

2

2 2 2
2 0 22

2 2 2 2 2

1 d UdP
T T U

g dX g gdY

ν ν
β ρ β β κ

− = − +           (6) 

From (5) and (6) one obtains  

Region-I 

2

1

2

1 1

1T d P

X g dXβ ρ
∂

=
∂

                         (7) 

3

1 1 1 1 1

3

1 1 1

T d U dU

Y g g dYdY

ν ν
β β κ

∂
= − +

∂
               (8) 

2 4 2

1 1 1 1 1

2 4 2

1 1 1

T d U d U

g gY dY dY

ν ν
β β κ

∂
= − +

∂
             (9) 

Region-II 

2

2

2

2 2

1T d P

X g dXβ ρ
∂

=
∂

                       (10) 

3

2 2 2 2 2

3

2 2 2

T d U dU

Y g g dYdY

ν ν
β β κ

∂
= − +

∂
               (11) 

2 4 2

2 2 2 2 2

2 4 2

2 2 2

T d U d U

g gY dY dY

ν ν
β β κ

∂
= − +

∂
               (12) 

Both the walls of the channel will be assumed to have a 

negligible thickness and to exchange heat by convection 

with an external fluid. In particular, at 1 2Y h= −  the 

external convection coefficient will be considered as 

uniform with the value 1q
 
and the fluid in the region 

1 2 0h Y− ≤ ≤
 
will be assumed to have a uniform reference 

temperature
1qT . At 2 2Y h= the external convection 

coefficient will be considered as uniform with the value 

2q and the fluid in the region 20 2Y h≤ ≤
 
will be 

supposed to have a uniform reference temperature
2 1q qT T≥ . 

Therefore, the boundary conditions on the temperature field 

can be expressed as 

( )( )
1

1

1

1 1 1 1

2

, 2
q

h
Y

T
k q T T X h

Y =−

∂
− = − −

∂
           (13) 

( )( )
2

2

2

2 2 2 2

2

, 2
q

h
Y

T
k q T X h T

Y =

∂
− = −

∂
              (14) 

On account of (8) and (11), (13) and (14) can be 

rewritten as 

( )( )
1

3

1 1 1

1 1 13

1 1 1

1
, 2q

d U dU g
q T T X h

dY kdY

β
κ ν

− = − −  at 1

2

h
Y = −  (15) 
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( )( )
2

3

2 2 2
2 2 23

2 2 2

1
, 2 q

d U dU g
q T X h T

dY kdY

β
κ ν

− = −  at 2

2

h
Y =  (16) 

On account of (5) and (6), there exist a constant A such 

that  

dP
A

dX
=                                  (17) 

For the problem under examination, the energy balance 

equation in the presence of viscous dissipation can be 

written as  

Region-I 

22

21 1 1 1

12

1 1 1p p

d T dU
U

C dY CY

ν ν
α κ α

 = − − ∂  
              (18) 

Region-II 

22

22 2 2 2

22

2 2 2p p

d T dU
U

C dY CY

ν ν
α κ α

 = − − ∂  
               (19) 

From (9), (18), (12) and (19) allow one to obtain 

differential equations for iU
 
namely 

Region-I 

24 2 2
1 1 1 1

14 2
1 1 1 1 1

1 1

p p

d U d U dU U
g

g c dY cdY dY
β

β κ α κ α

  
 = + +    

   (20) 

Region-II 

24 2 2
2 2 2 2

24 2
2 2 2 2 2

1 1

p p

d U d U dU U
g

g c dY cdY dY
β

β κ α κ α

  
 = + +    

  (21) 

The boundary conditions on velocity are no-slip 

conditions, and those induced by boundary conditions on 

temperature. In addition, the continuity of velocity, shear 

stress, temperature and heat flux at the interface between 

the two porous layers are assumed as:  

( ) ( )1 1 2 22 2 0U h U h− = =                      (22) 

together with (15) and (16) which on account of (5) and 

(6) can be rewritten as  

( )
1

3 2

1 1 1 1 1 1 1

03 2

1 1 1 1 1 1

1
q

d U dU q d U q g q A
T T

dY k k kdY dY

β
κ ν µ

− − = − −   at  

1

2

h
Y = −  

( )
2

3 2

2 2 2 2 2 2 2

03 2

2 2 2 2 2 2

1
q

d U dU q d U q q gA
T T

dY k k kdY dY

β
κ µ ν

− + = − −    at  

2

2

h
Y =                                     (23) 

( ) ( )1 2
0 0U U= ,  

( ) ( )1 2

1 2

0 0dU dU

dY dY
µ µ= ,  ( ) ( )1 2

0 0T T= ,  

( ) ( )1 2

1 2

0 0dT dT
k k

dY dY
=                  (24) 

Equations (20)-(24) determine the velocity distribution. 

They can be written in a dimensionless form by means of 

the following dimensionless parameters 

( )
1

1 1

0

U
u

U
= , ( )

2

2 2

0

U
u

U
= , 1

1

1

Y
y

D
= , 2

2

2

Y
y

D
= ,

3

1 1

2

1

g TD
Gr

β
ν
∆

= ,

( )1

0 1

1

Re
U D

ν
= ,

( )2
1

0 1

1

U
Br

k T

µ
=

∆
 ,

Re

GrΛ = ,     1 0

1

T T

T
θ −

=
∆

, 

2 0

2

T T

T
θ −

=
∆

, 2 1
T

T T
R

T

−
=

∆
, 1

1 2
1

Da
D

κ
= , 2

2 2
2

Da
D

κ
= ,

1 1

1

1

h D
Bi

k
= , 2 2

2

2

h D
Bi

k
= ,   1 2

1 2 1 22 2

Bi Bi
s

Bi Bi Bi Bi
=

+ +
     (25) 

The reference velocity and the reference temperature are 

given by 

( )
2

1 1

0

148

AD
U

µ
= − , 

( )
2

2 2

0

248

AD
U

µ
= − , ( )1 2

2 10

1 2

1 1

2

q q

q q

T T
T s T T

Bi Bi

+  
= + − − 

 
        (26) 

Moreover, the temperature difference T∆  is given by 

2 1q q
T T T∆ = − if 

1 2q q
T T< . As a consequence, the 

dimensionless parameter TR  can only take the values 0 or 1. 

More precisely, the temperature difference ratio TR  is equal 

to 1 for asymmetric heating i.e.
1 2q q

T T< , while TR =0 for 

symmetric heating i.e. 
1 2q q

T T= , respectively. Equation (17) 

implies that A  can be either positive or negative. If 0A < , 

then 
0

iU , Re , and Λ  are negative, i.e. the flow is 

downward. On the other hand, if 0A > , the flow is upward, 

so that 
0

iU , Re , and Λ are  positive. Using (25) and (26), 

(20)-(24) becomes 

Region-I 

24 2 2

1 1 1 1

4 2

1 1

1d u d u du u
Br

Da dy Dady dy

  
 − = Λ +    

         (27) 

Region-II 

24 2 2
42 2 2 2

4 2

2 2

1d u d u du u
Br bh knm

Da dy Dady dy

  
 − = Λ +    

       (28) 

The boundary and interface conditions becomes  

( ) ( )1 2
1 4 1 4 0u u− = = ,  
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2 3

1 1 1

2 3

1 1 1 11 4

1 1 4
48 1

2

T

y

d u du d u R s

Da Bi dy Bi Bidy dy
=−

   Λ
+ − = − + +   

  
 , 

2 3

2 2 2

2 3

2 2 2 21 4

1 1 4
48 1

2

T

y

d u d u du R sbn

Bi Bi Da dy Bidy dy =

   Λ
+ − = − − +   

  

, 

( ) ( )2

1 20 0u mh u= ,   
( ) ( )1 2
0 0du du

h
dy dy

= , 

2 2

1 1 2 2

2 2

1 2

1 1
48 1

d u u d u u

Da nb Da nbdy dy

     − = − + −     
    

    at  0Y =  

3 3

1 1 2 2

3 3

1 2

1 1 1d u du d u du

Da dy nbkh Da dydy dy

   
− = −   

   

   at  0Y =             (29) 

2.1. Basic Idea of Differential Transformation Method 

(DTM) 

If ( )u y  is analytic in the time domain T, then it will be 

differentiated continuously with respect to y  in the domain 

of interest. The differential transform of function ( )u y  is 

defined as  

( )
0

1
( )

!

k

k

y

d u y
U k

k dy
=

 
=  

  
                       (30) 

where ( )u y  is the original function and ( )U k  is the 

transformed function which is called the T-function. 

The differential inverse transform of ( )U k  is defined as 

follows: 

( ) ( )
0

k

k

u y U k y
∞

=

=∑                         (31) 

In real applications, the function ( )u y  by a finite series 

of (31) can be written as 

( ) ( )
0

n
k

k

u y U k y
=

=∑                       (32) 

Table 1: The operations for the one-dimensional differential transform 

method. 

Original function Transformed function 

( ) ( ) ( )y x g x h x= ±  ( ) ( ) ( )Y k G k H k= ±  

( ) ( )y x g xα=  ( ) ( )Y k G kα=  

( )
( )

dg x
y x

dx
=  ( ) ( 1) ( 1)Y k k G k= + +  

2

2

( )
( )

d g x
y x

dx
=  ( ) ( 1)( 2) ( 2)Y k k k G k= + + +  

( ) ( ) ( )y x g x h x=  
0

( ) ( ) ( )
k

l

Y k G l H k l
=

= −∑  

( ) my x x=  
1, if

( ) ( )
0, if

k m
Y k k m

k m
δ

=
= − =  ≠

 

and (31) implies that ( ) ( )
1

k

k n

u y U k y
∞

= +

= ∑  and is 

neglected as it is small. Usually, the values of n are decided 

by a convergence of the series coefficients.  The 

fundamental mathematical operations performed by 

differential transform method are listed in Table 1. 

3. Solutions 

3.1. Special Cases 

3.1.1. Case of Negligible Viscous Dissipation ( )0Br =  

The solution of (27) and (28) using boundary and 

interface conditions in (29) in the absence of viscous 

dissipation term ( )0Br =  is given by 

Region-I 

( ) ( )1 1 2 3 1 4 1
cosh sinhu l l y l M y l M y= + + +   (33) 

Region-II 

( ) ( )2 5 6 7 2 8 2
cosh sinhu l l y l M y l M y= + + +          (34) 

where ( )1 1
1M Da= , ( )2 2

1M Da=  

Using (29) in (5) and (6), the energy balance equations 

becomes 

Region-I 

2

1 1
1 2

1

1
48

d u u

Dady
θ

 
= − − + Λ  

                       (35) 

Region-II 

2

2 2
2 2

2

1
48

d u u

bn Dady
θ

 
= − − + Λ  

                (36) 

Using the expressions obtained in (33) and (34) the 

energy balance (35) and (36) becomes 

Region-I 

( ) ( ) ( )1 2

1 1 1 2 1

1

1
48 cosh sinh

l l y
r M y r M y

Da
θ

+ 
= − + + + Λ  

        (37) 

Region-II 

( ) ( ) ( )5 6

2 3 2 4 2

2

1
48 cosh sinh

l l y
r M y r M y

bn Da
θ

+ 
= − + + + Λ  

     (38) 

3.1.2. Case of Negligible Buoyancy Force ( )0Λ =  

The solution of (27) and (28) can be obtained when 

buoyancy forces are negligible ( 0Λ = ) and viscous 

dissipation is dominating ( 0Br ≠ ), so that purely forced 

convection occurs. For this case, solutions of (27) and (28), 

using the boundary and interface conditions given by (29), 

the velocities are given by 

Region-I 
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( ) ( )1 1 2 3 1 4 1
cosh sinhu f f y f M y f M y= + + +        (39) 

Region-II 

( ) ( )2 5 6 7 2 8 2
cosh sinhu f f y f M y f M y= + + +       (40) 

The energy balance (18) and (19) in non-dimensional 

form can also be written as 

Region-I 

22 2

1 1 1

2

1

d du u
Br

dy Dady

θ   
 = − +    

                   (41) 

Region-II 

22 2

42 2 2

2

2

d du u
Br k m h

dy Dady

θ   
 = − +    

            (42) 

The boundary and interface conditions for temperature 

are  

( )1 1

1 1

11 4

4
1 4 1

2

T

y

d Bi R s
Bi

dy Bi

θ θ
=−

 
− − = + 

 
, 

( )2 2

2 2

21 4

4
1 4 1

2

T

y

d Bi R s
Bi

dy Bi

θ θ
=

 
+ = + 

 
 , 

( ) ( )1 2
0 0θ θ= ,   

( ) ( )1 2
0 01d d

dy kh dy

θ θ
=             (43) 

Using (39) and (40), solving (41) and (42) we obtain 

Region-I 

( )( ( ) ( ) ( )
( ) ( ) )

1 10 1 11 1 12 1 13 1

4 3 2

14 1 15 1 16 17 18 1 2

cosh 2 sinh 2 cosh sinh

cosh sinh

Br p M y p M y p M y p M y

p y M y p y M y p y p y p y c y c

θ = − + + + +

+ + + + + +
                      (44) 

Region-II 

( )( ( ) ( ) ( )
( ) ( ) )

4

2 28 2 29 2 30 2 31 2

4 3 2

32 2 33 2 34 35 36 3 4

cosh 2 sinh 2 cosh sinh

cosh sinh

Br mkh p M y p M y p M y p M y

p y M y p y M y p y p y p y c y c

θ = − + + +

+ + + + + + +
                   (45) 

3.2. Perturbation Method (PM) 

3.2.1. Combined Effects of Buoyancy Forces and Viscous 

Dissipation 

We solve (27) and (28) using the perturbation method 

with a dimensionless parameter ε (<<1) defined as  

Brε = Λ                                      (46) 

which does not depend on the reference temperature 

difference T∆ . To this end the solutions are assumed in the 

form 

( ) ( ) ( ) ( ) ( )2

0 1 2

0

...
n

n

n

u y u y u y u y u yε ε ε
∞

=

= + + + =∑       (47) 

Substituting (47) in (27) and (28) and equating the 

coefficients of like powers of ε  to zero, we obtain the zero 

and first order equations as follows: 

Region-I 

Zero-order equations 

4 2

10 10

4 2

1

1
0

d u d u

Dady dy
− =                          (48) 

First-order equations 

2 24 2

10 1011 11

4 2

1 1

1 du ud u d u

Da dy Dady dy

 
− = + 

 
                (49) 

Region-II 

Zero-order equations 

4 2

20 20

4 2

2

1
0

d u d u

Dady dy
− =                         (50) 

First-order equations 

2 24 2

20 2021 21
14 2

2 2

1 du ud u d u
z

Da dy Dady dy

  
 − = +    

             (51) 

The corresponding boundary and interface conditions 

given by (29) for the zeroth and first order reduces to 

Zero-order 

( ) ( )10 20
1 4 1 4 0u u− = =

,  
( ) ( )2

10 200 0u mh u=
, 

( ) ( )10 20
0 0du du

h
dy dy

= , 

2 2

10 10 20 20

2 2

1 2

1 1
48 1

d u u d u u

Da nb Da nbdy dy

     − = − + −     
    

 at 0y = , 

3 3

10 10 20 20

3 3

1 2 2

1 1 1d u du d u du

Da dy z Da dydy dy

   
− = −   

   
          at 0y = ,

   
2 3

10 10 10

2 3

1 1 1 11 4

1 1 4
48 1

2

T

y

d u du d u R s

Da Bi dy Bi Bidy dy
=−

   Λ
+ − = − + +   

  
,  
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2 3

20 20 20

2 3

2 2 2 21 4

1 1 4
48 1

2

T

y

d u d u du R sbn

Bi Bi Da dy Bidy dy
=

   Λ
+ − = − − +   

  

     (52) 

First-order  

( ) ( )11 21
1 4 1 4 0u u− = =

,  
( ) ( )2

11 210 0u mh u=
,  

( ) ( )11 21
0 0du du

h
dy dy

=  

2 2

11 11 21 21

2 2

1 2

1d u u d u u

Da nb Dady dy

   
− = −   

   
  at 0y = , 

3 3

11 11 21 21

3 3

1 2 2

1 1 1d u du d u du

Da dy z Da dydy dy

   
− = −   

   
 at 0y =  

2 3

11 11 11

2 3

1 1 1 1 4

1 1
0

y

d u du d u

Da Bi dy Bidy dy =−

 
+ − = 

 
, 

2 3

21 21 21

2 3

2 2 2 1 4

1 1
0

y

d u d u du

Bi Da Bi dydy dy =

 
+ − = 

 
               (53) 

Solutions of zeroth-order (48) and (50) using boundary 

and interface conditions (52) are 

( ) ( )10 1 2 3 1 4 1
cosh sinhu H H y H M y H M y= + + +

 
   (54) 

( ) ( )20 5 6 7 2 8 2
cosh sinhu H H y H M y H M y= + + +    (55) 

Solutions of first-order (49) and (51) using boundary and 

interface conditions of (53) are 
 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

11 9 10 11 1 12 1 10 1

2

11 1 12 1 13 1 14 1

2 4 3 2

15 1 16 17 18

cosh sinh cosh 2

sinh 2 sinh cosh cosh

sinh

u H H y H M y H M y k M y

k M y k y M y k y M y k y M y

k y M y k y k y k y

= + + + + +

+ + + +

+ + +
                 (56) 

( ) ( ) ( )(
( ) ( ) ( ) ( )

( ) )

21 13 14 15 2 16 2 1 28 2

2

29 2 30 2 31 2 32 2

2 4 3 2

33 2 34 35 36

cosh sinh cosh 2

sinh 2 sinh cosh cosh

sinh

u H H y H M y H M y t k M y

k M y k y M y k y M y k y M y

k y M y k y k y k y

= + + + + +

+ + + +

+ + +

                (57) 

Using velocities given by (54)-(57), the expressions for energy balance (35) and (36) becomes 

Region-I 

( ( )( ( ) ( )

( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )) ( ))

2 2

1 1 10 1 1 11 1 1 12 1

1 13 1 14 1 1 1

2 4 2 3 2 2

15 1 1 1 1 16 1 17 16 1 18

2 2 2

17 1 10 18 1 9 1 1 2

1
48 3 cosh 2 3 sinh 2 2 cosh

2 sinh 4 sinh 2cosh

4 cosh 2sinh 12

6 2

M k M y M k M y M k M y

M k M y k M y M y M y

k M y M y M y M k y M k y k M k y

k M H y k M H M H H y

θ ε= − − + +
Λ
+ + +

+ + + + + +

+ + + + + +

                  (58) 

Region-II 

( (( ( ) ( ) ( )

( ) ( ( ) ( )) ( )(
( )) )( ) ( )

( )) ( ))

2 2

2 1 2 28 2 2 29 2 2 30 2

2 31 2 32 2 2 2 33 2 2

2 4 3 2 2

2 2 34 35 1 34 2 36 1 35 1 36

2 2

2 13 14 2 5 6

1
48 3 cosh 2 3 sinh 2 2 cosh

2 sinh 4 sinh 2cosh 4 cosh

2sinh 12 6 2

z M k M y M k M y M k M y
bn

M k M y k M y M y M y k M y M y

M y M k y k y z k M k y z k y z k

M H H y M H H y

θ ε= − − + +
Λ

+ + + +

+ + + + + + +

+ + + +

                      (59) 

3.3. Solution with Differential Transform Method 

Now Differential Transformation method has been applied for solving (27) and (28).Taking the differential 

transformation of (27) and (28) with respect to k ,  and following the process as given in Table 1 yields: 
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( )( )( )( ) ( )( ) ( )

( )( )
1

0 01

1 1
( 4) 1 2 2

1 2 3 4

1
1 1 ( 1) ( 1) ( ) ( )

r r

s s

U r r r U r
r r r r Da

Br r s s U r s U s U s U r s
Da= =


+ = + + ++ + + + 

 + Λ − + + − + + + − 
 

∑ ∑
                                  (60) 

( )( ) ( )( )
( )( ) ( )

2

4

0 02

1 ( 1)( 2)
( 4) ( 2)

1 2 3 4

1
1 1 ( 1) ( 1) ( )

r r

s s

r r
V r V r

r r r r Da

Br b n k m h r s s V r s V s V r s V s
Da= =

 + ++ = ++ + + + 
 + Λ − + + − + + + −  

 
∑ ∑

                             (61) 

The differential transform of the initial conditions are as follows 

( ) ( ) ( ) ( )3 4

1 2
0 , 1 , 2 , 3 ,

2 6

c c
U c U c U U= = = = ( ) 1

2
0

c
V

mh
= , ( ) 21 ,

c
V

h
=  

( ) ( ) ( )1 1

3 4 2 2 2 22

1 2

1
2 48 1 , 3

c c
V nb c V c c Da nbkh c h Da

nb Da Da nbmh

  = − − − + = − +  
  

                            (62) 

where ( )U r  and ( )V r  are the transformed versions of 

( )1
u y  and ( )2

u y  respectively. 

Using the conditions as given in (62), one can evaluate 

the unknowns 1c , 2c , 3c , and 4c . By using the DTM and 

the transformed boundary conditions, above equations that 

finally leads to the solution of a system of algebraic 

equations. 

A Nusselt number can be defined at each boundary, as 

follows: 

( )
1

1 2 1
1

2 2 1 1
2

2( )

2 ( 2) (1 )T T
Y h

h h dT
Nu

dYR T h T h R T
=−

+
=

− − + − ∆  
 

( )
2

1 2 2
2

2 2 1 1
2

2( )

2 ( 2) (1 )T T
Y h

h h dT
Nu

dYR T h T h R T
=

+
=

− − + − ∆  
  (63) 

By employing (26), in (64) can be written as  

( )
1

1

2 1
1 4

(1 )

1 4 ( 1 4) (1 )T T
y

dh
Nu

dyR R

θ
θ θ

=−

+=
− − + −  

 

( )
2

2

2 1
1 4

(1 1 )

1 4 ( 1 4) (1 )T T
y

dh
Nu

dyR R

θ
θ θ

=

+=
− − + −  

.     (64) 

All the constants appeared in the above equations are not 

presented due to want of space. 

4. Results and Discussion 

The governing (28) and (29) subject to the boundary 

conditions (30) have been solved analytically by regular 

perturbation method valid for small values of perturbation 

parameter ε . However this condition is relaxed by finding 

the solutions valid for all values of  ε  by Differential 

Transform method which is a semi-analytical method. Both 

the cases of asymmetric ( )1
T

R =  and symmetric ( )0
T

R =  

wall heating conditions are considered and the results are 

shown graphically in Figs. 2-13 for equal and unequal Biot 

numbers. When 0Br =  for equal Biot numbers, there is a 

flow reversal for 400Λ =  at the left wall and for 

400Λ = −  at the right wall as seen in Fig. 2. Further Fig. 2 

also display the result that as σ  increases velocity 

decreases in both the regions for all values of Λ . The non-

dimensional temperature field θ  is evaluated for different 

values of Brinkman number in the case of negligible 

buoyancy force which corresponds to 0Λ =  for equal and 

unequal Biot numbers in Figs. 3a and 3b respectively. The 

temperature field is linear in the absence of mixed 

convection parameter Λ  and viscous dissipation ( )0Br =  

indicating that the heat transfer is purely by conduction for 

both equal and unequal Biot numbers. The temperature 

field increases with increase in Brinkman number for both 

equal and unequal Biot numbers. However the nature of 

profiles for equal and unequal Biot numbers is different at 

the cold plate. One should realize that this nature is due to 

the fact that when
1 2

0.1, 10Bi Bi= = , one obtains 

( ) ( )2 2T L T L− >  (following Zanchini, [26]). The effect 

of Λ  and Br  for two fluid model is the similar result 

observed by Zanchini [26] and Barletta [37] using 

asymmetric wall heating conditions for one fluid model. To 

compare the present results for one fluid model the values 

of ratios of viscosity, width and conductivity are fixed as 1. 
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The combined effects of Λ  and Br  on the velocity and 

temperature fields u  and θ   for different values of 

perturbation parameter ε  is shown in Figs. 4a and 4b 

respectively for equal Biot numbers. For upward flow 

( )0, 0εΛ > >  velocity and temperature are increasing 

functions of ε . For downward flow ( )0, 0εΛ < < velocity 

is a decreasing function of ε  whereas temperature is an 

increasing function of ε . It is also observed from Fig. 4a 

that flow reversal occurs at the left wall for buoyancy 

assisting flow and at the right wall for buoyancy opposing 

flow. This nature is due the reason that increase in 

perturbation parameter ε  ( )0ε >  implies the enhancement 

of viscous dissipation which results in higher values of 

temperature and hence enhances the buoyancy forces also. 

Therefore velocity increases for 0Λ >   and decreases for 

0Λ < . Figures 4a and 4b also reveals that the solutions 

obtained by PM and DTM agree very well for small values 

of ε   and the difference is large as ε  increases. The effect 

of Λ  and ε  on the flow is the similar result obtained by 

Prathap Kumar et al. [17] for isothermal boundary 

conditions for composite porous medium and by Umavathi 

and Santhosh [38] for one fluid model.  

 

Figures 5a and 5b are the plots of velocity and 

temperature for different values of porous parameter 

( )1 2
σ σ σ= =  for equal Biot numbers. As the porous 

parameter σ  increases both the velocity and temperature 

decreases in both the regions which is a classical result. 

One can infer this result as, the frictional drag resistance 

against the flow becomes pronounced for large values of σ  

and hence the flow is reduced (for simplicity the porous 

parameter σ  is considered to be equal in both the regions). 

The effect of σ  on the flow was the similar result obtained 

by Prathap Kumar et al. [17] for isothermal boundary 

conditions and by Umavathi and Santhosh [38] for one 

fluid model using boundary conditions of third kind.  

 

The effect of viscosity ratio ( )1 2
m µ µ=  on the velocity 

and temperature fields is shown in Figs. 6a and 6b 

respectively for equal Biot numbers. As the viscosity ratio 

m  increases, the velocity increases in region-I and 

decreases in region-II. The viscosity ratio m  is taken as the 

ratio of viscosity of the fluid in region-I to the viscosity of 

the fluid in region-II. Physically, the values of 1m >  

implies the viscosity of the fluid in region-II is larger than 

the viscosity of the fluid in region-I. It is seen from Fig. 6a 

that for values of 1m >  the magnitude of the velocity is 

less in region-II when compared to region-I. For values of 

1m =  (both the fluids in region-I and region-II have the 

same viscosity) show almost symmetric profiles. However 

the profile in region-I and region-II look different because 
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of the value of Λ  chosen to be 500. Further there is a 

continuity of velocity at the interface for 1m =  and sudden 

jump at the interface for values of 1m > . The fall at the 

interface for values of 1m >  is due to the nature of the 

condition imposed at the interface. Figure 6b shows almost 

no variation for the effects of m  on the temperature. As the 

porous parameter ( )1 2
σ σ σ= =  increases velocity 

decreases in both regions. However the effect of σ  is not 

effective on the temperature field as seen in Fig. 6b. 

 

The effect of width ratio ( )2 1
h h h  on the flow field is 

shown in Figs. 7a and 7b respectively. The velocity and 

temperature decreases in both regions as the width ratio h  

increases. Physically, h  increases imply width of the fluid 

in region-I is wider than that of the fluid in region-II. The 

magnitude of suppression is significant in region-I when 

compared to region-II. Further from Fig. 7a one can also 

explore that as ( )1 2
σ σ σ= =  increases velocity decreases 

in both regions. Figure 7b also tells that the effect of σ  is 

not effective on the temperature field. 

 

The velocity and temperature fields for variations of 

conductivity ratio ( )1 2
k k k  are seen in Figs. 8a and 8b 

respectively for equal Biot numbers. As k  increases both 

the velocity and temperature decreases in both regions. 

Values of  1k >  implies the thermal conductivity in region-

II is greater than the thermal conductivity in region-I. 

Further as σ  increases velocity decreases in both the 

regions and is not effective on the temperature field. 

The effect of Λ  and ε  for unequal Biot numbers on the 

velocity and temperature field is displayed in Figs. 9a and 

9b respectively. It is observed that for unequal Biot 

numbers there is no flow reversal at both the cold and hot 

walls for upward and downward flows when compared 

with equal Biot numbers. Further the nature of temperature 

profiles for unequal Biot numbers is more distinguishable 

at the cold wall when compared with equal Biot numbers. 

However the effect of Λ  and ε  for unequal Biot numbers 

is similar to the equal Biot numbers. Comparing Figs. 4a, b 

(equal Biot numbers) and Figs. 9a,b (unequal Biot numbers) 

one can explore the result that the effect of Λ  on u  and θ  

becomes stronger if either 
1

Bi  or 
2

Bi  becomes stronger. 

 

 

The effect of porous parameter ( )1 2
σ σ σ= =  for 

unequal Biot numbers on the flow field is depicted in Figs. 

10a,b. The effect of σ  on the flow for unequal Biot 

numbers shows the similar nature as that on equal Biot 

numbers (Fig. 5a, b). That is as σ  increases velocity 

decreases in both the regions for both buoyancy assisting 

and buoyancy opposing flows. The effect of σ  is not 

changing the temperature field as seen Fig. 10b. The effect 

of σ  on the flow was the similar result obtained by 

Umavathi and Santosh [38] for unequal Biot numbers for 

one fluid model. 

Figures 11a,b and 12a,b are the plots of u  and θΛ  for 
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symmetric wall heating conditions considering equal and 

unequal Biot numbers. These figures show that u  and θΛ  

are increasing functions of ε  for both equal and unequal 

Biot numbers. Further the velocity profiles are symmetric 

in nature for both equal and unequal Biot numbers (Figs. 

11a and 12a). The temperature profiles at the cold wall 

shows different nature for equal and unequal Biot numbers 

(Figs. 11b and 12b). The similar nature was also observed 

for asymmetric wall heating conditions. The reason for this 

nature is explained above for equal Biot numbers. One can 

infer that symmetric wall heating conditions also the effect 

of  u  and θΛ  is stronger if either 
1

Bi  or 
2

Bi  becomes 

smaller.  

 

 

 

The rate of heat transfer at both the walls for variation of 

ε  is shown in Fig. 13. The Nusselt number at the cold 

wall is a decreasing function of mixed convection 

parameter Λ for upward flow and increasing function of 

Λ for downward flow. The rate of heat transfer is more for 

smaller values of Λ at the left wall. The Nusselt number is 

an increasing function of mixed convection parameter 

Λ for downward flow at the hot wall and decreasing 

function of Λ for upward flow. The flow nature of Nusselt 

number on ε  is the similar result obtained by Umavathi 

and Santhosh [38] for one fluid model. 

It is observed from Fig. 14 that the Nusselt number at the 

cold wall is a decreasing function of porous parameter σ  

for both upward and downward flows. Reversal effect is 

observed at the hot wall. That is to say that Nusselt number 

increases as σ  increases at the hot wall for both upward 

and downward flows. 

 

 

Tables 2-4 are the velocity and temperature solutions 

obtained by PM and DTM for symmetric and asymmetric 

wall heating conditions varying the perturbation parameter 

ε  for equal and unequal Biot numbers.  In Table 2, it is 

seen that in the absence of perturbation parameter, the PM 

and DTM solutions are equal for both the velocity and 

temperature fields.  When the perturbation parameter ε  is 
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increased ( )2ε = , it is seen that the PM and DTM solutions 

do not agree.  Similar nature is also observed in Table3 and 

4 for PM and DTM solutions.  Table 2 and 3 are the 

solutions of velocity and temperature for asymmetric wall 

heating conditions for equal and unequal Biot numbers 

respectively.  Table 2 and 3 also reveals that the percentage 

of error is large at the interface for velocity when compared 

with the error at the boundaries.  Further the percentage of 

error between PM and DTM is large for unequal Biot 

numbers when compared with equal Biot numbers.  Table 4 

displays the solutions of symmetric wall heating conditions 

for equal Biot numbers.  The percentage of error is less for 

symmetric wall heating conditions for equal Biot numbers 

when compared with asymmetric wall heat conditions. 

Table 2: Values of velocity and temperature for 500Λ =  and  1 21, 4TR σ σ= = =  

y  

0ε = , 1 2 10Bi Bi= =  2ε = , 1 2 10Bi Bi= =  

Analytical DTM % Error Analytical DTM % Error 

Velocity 

-0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

-0.150 0.045040 0.045040 0.00% 0.145290 0.130350 1.49% 

-0.050 0.696740 0.696740 0.00% 0.856920 0.833180 2.37% 

0.000 1.055840 1.055840 0.00% 1.227040 1.201710 2.53% 

0.050 1.336910 1.336910 0.00% 1.504990 1.480140 2.49% 

0.150 1.345480 1.345480 0.00% 1.461910 1.444680 1.72% 

0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

 Temperature 

-0.250 -0.357140 -0.357140 0.00% -0.351460 -0.352300 0.08% 

-0.150 -0.214290 -0.214290 0.00% -0.203020 -0.204740 0.17% 

-0.050 -0.071430 -0.071430 0.00% -0.055800 -0.058110 0.23% 

0.000 0.000000 0.000000 0.00% 0.016810 0.014350 0.25% 

0.050 0.071430 0.071430 0.00% 0.088740 0.086200 0.25% 

0.150 0.214290 0.214290 0.00% 0.231080 0.228580 0.25% 

0.250 0.357140 0.357140 0.00% 0.368970 0.367260 0.17% 

Table 3: Values of velocity and temperature for 500Λ =  and  1 21, 4TR σ σ= = =  

y  

0ε = , 1 21, 10Bi Bi= =   2ε = , 1 21, 10Bi Bi= =   

Analytical DTM % Error Analytical DTM % Error 

Velocity 

-0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

-0.150 0.410790 0.410790 0.00% 0.548700 0.511480 3.72% 

-0.050 0.876790 0.876790 0.00% 1.074650 1.021960 5.27% 

0.000 1.055840 1.055840 0.00% 1.257930 1.204450 5.35% 

0.050 1.156860 1.156860 0.00% 1.347420 1.297300 5.01% 

0.150 0.979730 0.979730 0.00% 1.102830 1.070860 3.20% 

0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

 Temperature 

-0.250 -0.156250 -0.156250 0.00% -0.137610 -0.142890 0.53% 

-0.150 -0.093750 -0.093750 0.00% -0.073830 -0.079350 0.55% 

-0.050 -0.031250 -0.031250 0.00% -0.011520 -0.016800 0.53% 

0.000 0.000000 0.000000 0.00% 0.019070 0.014040 0.50% 

0.050 0.031250 0.031250 0.00% 0.049320 0.044620 0.47% 

0.150 0.093750 0.093750 0.00% 0.108880 0.105070 0.38% 

0.250 0.156250 0.156250 0.00% 0.165570 0.163330 0.22% 
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Table 4: Values of velocity and temperature for  1 20, 4TR σ σ= = =  

y  

0ε = , 1 2 10Bi Bi= =   2ε = , 1 2 10Bi Bi= =   

Analytical DTM % Error Analytical DTM % Error 

Velocity  

-0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

-0.150 0.695260 0.695260 0.00% 0.744640 0.738170 0.65% 

-0.050 1.016820 1.016820 0.00% 1.091330 1.081560 0.98% 

0.000 1.055840 1.055840 0.00% 1.133490 1.123300 1.02% 

0.050 1.016820 1.016820 0.00% 1.091330 1.081560 0.98% 

0.150 0.695260 0.695260 0.00% 0.744640 0.738170 0.65% 

0.250 0.000000 0.000000 0.00% 0.000000 0.000000 0.00% 

 Temperature  

-0.250 0.000000 0.000000 0.00% 0.003950 0.003430 0.05% 

-0.150 0.000000 0.000000 0.00% 0.006490 0.005640 0.09% 

-0.050 0.000000 0.000000 0.00% 0.007420 0.006440 0.10% 

0.000 0.000000 0.000000 0.00% 0.007520 0.006530 0.10% 

0.050 0.000000 0.000000 0.00% 0.007420 0.006440 0.10% 

0.150 0.000000 0.000000 0.00% 0.006490 0.005640 0.09% 

0.250 0.000000 0.000000 0.00% 0.003950 0.003430 0.05% 

 

5. Conclusions 

The analytical (PM) and semi-analytical (DTM) 

solutions were found for the problem of steady laminar 

mixed convective flow in a vertical channel filled with 

composite porous medium using boundary conditions of 

third kind.  It was concluded that the flow at each position 

was an increasing function of ε  for upward flow and 

decreasing function of ε  for downward flow. The porous 

parameter suppresses the flow for symmetric and 

asymmetric wall heating conditions for all the governing 

parameters. Flow reversal was observed for asymmetric 

wall heating for equal Biot numbers and there is no flow 

reversal for unequal Biot numbers. The viscosity ratio 

increases the flow in region-I and decreases in region-II for 

equal Biot numbers.  The width ratio and conductivity ratio 

suppress the flow in both the regions for equal Biot 

numbers.  Similar result was also observed by Prathap 

Kumar et al. [17] for isothermal boundary conditions. The 

Nusselt number at the cold wall was increasing function of 

ε  and decreasing function of σ . The Nusselt number at 

the hot wall was decreasing function of ε  and increasing 

function of σ . The percentage of error between PM and 

DTM agree very well for small values of perturbation 

parameter. Fixing equal values for viscosity, width and 

conductivity for fluids in both the regions we get back the 

results of Umavathi and Santosh [38] for one fluid model. 
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Nomenclature 

A ─ Constant used in Eq.(18) 

1 2
,Bi Bi ─ Biot numbers 

Br ─ Brinkman number 
( )( )2
1

1 0 1U k Tµ ∆  

p
c ─ Specific heat at constant pressure 

1 2
,Da Da ─ Darcy numbers in region-I and II 

g ─ Acceleration due to gravity  

Gr ─ Grashof number ( )3 2

1 1 1g D Tβ υ∆  

k ─ Ratio of thermal conductivities ( )1 2
k k  

h ─ Width ratio ( )2 1
h h  

1 2
,Nu Nu ─ Nusselt numbers 

p ─ Non-dimensional pressure gradient  

P ─ Difference between pressure and hydrostatic 

pressure 

1 2
,q q ─External heat transfer coefficients 

Re ─ Reynolds number 
( )( )1

1 0 1
DU ν  

T
R ─ Temperature difference ratio 

T ─ Temperature  

1 2
,q qT T ─ Reference temperatures of the external fluid 

0
T ─Reference temperature 

1 2
,U U ─ Velocity component in the X -direction in 

region-I and II 
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( )
0

i
U ─Reference velocity 

1, 2
u u ─ Dimensionless velocity in the X -direction in 

region-I and II 

X ─Stream wise coordinate 

x ─Dimensionless stream wise coordinate 

Y ─Transverse coordinate 

y ─Dimensionless transverse coordinate 

Greek Symbols 

1
α ,

2
α ─Thermal diffusivity in region-I and II 

1
β ,

2
β ─Thermal expansion coefficient in region-I and II 

1 2
,κ κ ─Permeability of porous medium in region-I and II 

T∆ ─ Reference temperature difference ( )
2 1q qT T−  

ε ─ Dimensionless parameter  

1 2
,θ θ ─ Dimensionaless temperatures in region-I and II 

1 2
,µ µ ─Viscosity in region-I and II 

1 2
,ν ν ─ Kinematics viscosities in region-I and II 

1 2
,ρ ρ ─ Density of fluids in region-I and II 

Λ ─Dimensionless parameter ( )ReGr  

Subscripts 

1 and 2 reference quantities for Region-I and II, 

respectively 
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