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Abstract: In this paper a numerical method, based on collocation method and radial basis functions (RBF) is proposed for 

solving integral equations with a weakly singular kernel. Integrals appeared in the procedure of the solution are approximated by 

adaptive Lobatto quadrature rule. Illustrative examples are included to demonstrate the validity and applicability of the presented 

technique. In addition, the results of applying the method are compared with those of Homotopy perturbation, and Adomian 

decomposition methods. 
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1. Introduction 

Weakly singular integral equations have a major role in the 

fields of science and engineering. They appear in 

mathematical modeling of different phenomena in many 

disciplines such as: physics, chemistry, biology, and others. It 

is difficult to solve these equations analytically, hence 

numerical solutions are required. Singular integral equations 

have been approached by different methods including 

Collocation method [2-4], Reproducing kernel method [17], 

Galerkin method [5], Adomian decomposition method [1], 

Homotopy perturbation method [6], Radial Basis Functions 

[10, 11], Newton product integration method [7], and many 

others. 

In recent years, meshless methods are used as a class of 

numerical methods for solving functional equations. Meshless 

methods just use a scattered set of collocation points, 

regardless any relationship information between the 

collocation points. This property is the main advantage of 

these techniques over the mesh dependent methods such as 

finite difference methods, finite element methods. A 

well-known family of meshless methods is the method of 

radial basis functions. 

Since 1990, radial basis function method [8] is used as a 

meshless method to approximate the solutions of partial 

differential equations [9, 12-16]. These methods are 

developed for solving various types of linear and nonlinear 

functional equations such as Ordinary differential equations 

(ODEs). Integral and Integro-differential equations (IEs and 

IDEs) are solved with the RBF method by some researchers 

[19-21]. In [22-24] authors used the RBF method to solve 

some engineering problems. Also authors of [25] solved 

fractional diffusion equations by RBFs. 

In this paper, we will use an efficient method based on 

radial basis functions and collocation method to solve integral 

equations with a weakly singular kernel. The paper is 

organized as follows. In Section 2, the radial basis functions 

are introduced. Section 3, as the main part, presents the 

solution of weakly singular integral equations by RBF, via 

collocation method. Numerical illustrative examples are 

included in Section 4. A conclusion is drawn in Section 5. 

2. Radial Basis Functions 

Let's define the main features of the method. 

2.1. Definition of Radial Basis Functions 

Radial basis functions usually approximate a function as the 

following 

( ) ( )
=1

= , .
N

i i

i

s x x x xλ φ − ∈∑ � � R

 

Where : [0, )φ ∞ → R  is a fixed univariate function, the 

coefficients 
=1( )

N

i iλ  are real numbers and ⋅� � , denotes the 

Euclidean norm. 
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2.2. Radial Basis Functions Interpolation 

The radial basis functions approximation of a real function, 

say ( )u x , is given by 

( )
=1

=1

( ) ( ) =

= ( ) = ( ) ,

N

N i i

i

N
T

i i

i

u x u x x x

x x

λ φ

λφ

≈ −∑

∑ Φ Λ

� �

 

where 

( ) = ( ),i ix x xφ φ −� �  

1 2( ) = [ ( ), ( ), , ( )],T

Nx x x xφ φ φΦ …  

1 2= [ , ,... ] ,T

Nλ λ λΛ  

and ix , = 1, 2,...,i N  is a finite number of distinct points 

(centers) in R . Consider N  distinct support points 

( , ( ))j jx u x , = 1, 2,...,j N . One can find iλ s by solving 

the following linear system 

.AΛ = u  

Where 

, =1= [ ( )] ,N

j i i jx xφ −A � �  

1 2= [ , ,... ]T

Nλ λ λΛ , and 1 2= [ , ,... ] .T

Nu u uu  

Some well-known RBFs are listed in Table 1, where the 

Euclidian distance r  is real and non-negative, and c  is a 

positive scalar, called shape parameter. 

Table 1. Some well-known RBFs. 

Name of the function Definition 

Gaussian 
2

( ) = crr eφ −
 

Inverse Quadric 
2 2

1
( ) =r

r c
φ

+
 

Hardy Multiquadric 2 2( ) =r r cφ +  

Inverse Multiquadric 
2 2

1
( ) =r

r c
φ

+
 

Cubic 
3( ) =r rφ  

Thin plate splines 
2( ) = log( )r r rφ  

Hyperbolic secant ( ) = s ( )r ech crφ  

3. Application of RBF Method 

In this paper Radial Basis Functions are used to 

approximate solution of integral equations with a weakly 

singular kernel in the following general form 

( ) ( ) ( )
0

= , 0 1,
x y t

y x f x dt x
x t

+ ≤ ≤
−∫          (1) 

where ( )f x  is a known analytic function defined on the 

interval 0 1x≤ ≤ . In order to use the radial basis functions, 

let's consider ( )y x  as follows,  

=1

( ) ( ) = ( ) = ( ) .
N

T

N i i

i

y x y x x xλ φ≈ ∑ Φ Λ       (2) 

Substitution in (1) from (2) leads to  

0

( )
( ) = ( ) ,

T
x

T x
x f x dt

x t
+

−∫
Φ

Φ Λ Λ          (3) 

To determine iλ , = 1, 2, ,i N… , from Eq. (3), let's use 

shifted zeros of the Legendre polynomials, = jx x , 

= 1, 2, ,j N… , as the collocation points,  

0

( )
( ) = ( ).

T
x

jT

j j

j

t
x dt f x

x t

 
 −
 − 

∫
Φ

Φ Λ       (4) 

By using the Adaptive Lobatto Quadrature [18], we can 

approximate the integral in Eq. (4) to achieve a set of N  

linear equations for determining components of Λ . 

4. Numerical Examples 

In this section, two examples are provided to illustrate the 

efficiency of this approach. For the sake of comparing 

purposes, the same examples as [6], that have used Homotopy 

perturbation method, are considered.  

4.1 Example 

Let us consider the following weakly singular integral 

equation of the second kind  

( ) ( )5

2 2

0

16
= , 0 1,

15

x y t
y x x x dt x

x t
+ − ≤ ≤

−∫      (5) 

with the exact solution 
2( ) =y x x . 

Let's approximate ( )y x  as follows  

2

5

100
5

=1

( ) ( ) = e ,

x x
i

i

i

y x y x λ
−

−
≈ ∑            (6) 

where 

1 2

3 4 5

= 0.0469, = 0.2308,

= 0.5000, = 0.7692, = 0.9531,

x x

x x x
 

are shifted zeros of Legendre polynomial of degree 5. 

Substituting (6) into (5) gives  
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2
2

55 5 100
2100 2

0
=1 =1

16 e
e = ,

15

t x
i

x x
i

x

i i

i i

x x dt
x t

λ λ

−
−−

−
+ −

−∑ ∑ ∫
 

or 

2
2

55 100
2100 2

0
=1

e 16
e = .

15

t x
i

x x
i

x

i

i

dt x x
x t

λ

−
−−

−

 
 
 + +
 −
 
 

∑ ∫

 

By using = , = 1, ,5jx x j …  as collocation points, we 

have  

2
2

55 100
2100 2

0
=1

e 16
e = .

15

t x
ix x

j i
x

j

i j j

i j

dt x x
x t

λ

−
− −

−

 
 
 + +
 −
 
 

∑ ∫    (7) 

Using adaptive Lobatto quadrature, integrals in Eq. (7) is 

computed and Eq. (7) is reduced to the following equation  

AΛ = F                     (8) 

where 

1.4332 1.4327 1.4302 1.4256 1.4213

1.9603 1.9607 1.9588 1.9542 1.9494

= ,2.4107 2.4130 2.4135 2.4105 2.4064

2.7442 2.7489 2.7525 2.7520 2.7495

2.9360 2.9426 2.9485 2.9503 2.9490

 
 
 
 
 
 
  

A

 

5
5

2 2

=1

0.0027

0.0805
16

= = ,0.4386
15

1.1453

1.8543

j j

j

x x

 
 
  
 + 
  
 
  

F

 

and [ ]1 2 5= , , ,
Tλ λ λΛ …  is determined as the following  

2.7558 07

7.7979 07

= .1.0093 08

7.8189 07

2.7683 07

e

e

e

e

e

+ 
 − + 
 +
 − + 
 + 

Λ              (9) 

Substituting from (9) into (6) yields an approximate 

solution as the following  

2 2 2
0.0469 0.2308 0.5000

100 100 100
5

2 2
0.7692 0.9531

7100 100

( ) = 2.7558e 7.7979e 10.093e

7.8189e 2.7683e 10 ,

x x x

x x

y x

− − −
− − −

− −
− −


 − +




− + ×

  

with the maximum absolute error 7.9107 08e − . 

More accurate approximations to the solution may be 

attained by considering additional terms. The Errors of the 

numerical solutions for =10N , and different RBFs are 

shown in the Table 2. Results in the Table 2 shows that all 

solutions which are achieved by Gaussian 

( 2( ) = exp( /100)r rφ − ), Inverse Quadric ( 2( ) = 1/ (1 )r rφ + ), 

and Multiquadric ( 2
( ) = 1r rφ + ) RBFs are accurate enough 

for knowing this approach as a powerful device. Also the 

absolute error for this approach and Homotopy perturbation 

method [6] are shown in Figure 2. A Comparison which is 

made in Figure 2, shows that RBF method with Gaussian 

bases, gives more accurate solutions than the homotopy 

perturbation method by 18 terms. As x  increases, the Error 

of HPM is increased rapidly, but RBF Errors are not 

significant yet. 

 
Figure 1. Exact solution, ( )Ey x , and approximate solution, 

5 ( )y x , for 

Example 1. 

 

Figure 2. The absolute Error of HPM, by 18 terms, and RBF, for 
2(0.1 )

( ) = e
r

rφ − . 
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4.2. Example 

Now consider the following weakly singular integral 

equation 

( ) ( )
0

= , 0 1.
2

x y t
y x x x dt x

x t

π+ − ≤ ≤
−∫    (10) 

The exact solution is 
( ) =y x x

. 

First, 
( )y x

 is approximated by  

( )
8

8 2
=1

( ) = ,
1

i

i i

y x
x x

λ
+ −

∑           (11) 

where  

1 2 3 4

5 6 7 8

= 0.0199, = 0.1017, = 0.2372, = 0.4083,

= 0.5917, = 0.7628, = 0.8983, = 0.9801,

x x x x

x x x x
 

are shifted zeros of Legendre polynomials of degree 8. 

Substituting (11) into (10) results in  

( )
( )2

8 8

2 0
=1 =1

1

1
= ,

21

x
ii

i

i ii

t x
x x dt

x tx x

λ π λ
+ −

+ −
−+ −

∑ ∑ ∫
 

or  

( ) ( )( )
8

2 20
=1

1
= .

21 1

x

i

i i i

dt
x x

x x t x x t

πλ
 
 + +
 + − + − − 
 

∑ ∫  (12) 

By using = , = 1, ,8jx x j …  as collocation points, we 

have  

( ) ( )( )
8

2 20
=1

1
= .

211

x
j

i j j

i
i jj i

dt
x x

t x x tx x

πλ
 
 + +
 + − − + −
 

∑ ∫  (13) 

Integrals in Eq. (13) is computed by adaptive Lobatto 

quadrature, and Eq. (13) is reduced to matrix equation  

,AΛ = F                  (14) 

where  

8

=1

0.1721

0.4786

0.8597

1.2803
= = ,

1.69872

2.0715

2.3589

2.5296

j j

j

x x
π

 
 
 
 
 

   +    
 
 
 
 
  

F

 

1.2818 1.2730 1.2232 1.1127 0.9647 0.8248 0.7224 0.6659

1.6290 1.6364 1.6014 1.4852 1.3067 1.1260 0.9893 0.9126

1.9063 1.9482 1.9635 1.8852 1.7072 1.4972 1.3261 1.2268

2.0568 2.1396 2.2295 2.2389 2.1183 1.9163 1.7260 1.6079
=

2.0799
A

2.1924 2.3480 2.4609 2.4477 2.3103 2.1373 2.0163

2.0303 2.1558 2.3482 2.5366 2.6306 2.5907 2.4732 2.3722

1.9662 2.0946 2.3004 2.5267 2.6904 2.7334 2.6790 2.6094

1.9222 2.0502 2.2591 2.4994 2.6951 2.7834 2.7700 2.7239

 












,











  

and [ ]1 2 8= , , , .
Tλ λ λΛ …

 System (14) is solved to determine 

components of Λ  as below  

687.02

1608.32

1719.90

1446.34
= .

1225.73

1087.86

831.64

321.35

− 
 
 
 −
 
 
 −
 
 
 −
 
  

Λ                (15) 

Substituting from (15) into (11) gives an approximate 

solution as the following 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

8 2 2

2 2

2 2

2 2

687.02 1608.32
( ) =

1 0.0199 1 0.1017

1719.90 1446.34

1 0.2372 1 0.4083

1225.73 1087.86

1 0.5917 1 0.7628

831.64 321.35
,

1 0.8983 1 0.9801

y x
x x

x x

x x

x x

− +
+ − + −

− +
+ − + −

− +
+ − + −

− +
+ − + −

 

with the maximum error 2.4342 03e − . 

 

Figure 3. Exact solution, ( )Ey x , and approximate solution, 
8 ( )y x , for 

Example 2. 
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Figure 4. The absolute Error of HPM, by 18 terms, and RBF, for 

2( ) = 1r rφ + . 

Errors of the numerical solutions for = 10N , and 

Multiquadric ( 2( ) = 1r rφ + ), Inverse Quadric 

( 2( ) =1/ (1 )r rφ + ), and Inverse Multiquadric 

( 2( ) = 1/ 1r rφ + ) RBFs are shown in the Table 3. These 

results show that all solutions which are achieved by these 

different RBFs are accurate enough for knowing RBF method 

as a powerful device. The absolute error for this approach and 

HPM [6] are shown in Figure 4. A Comparison which is made 

in Figure 4, shows that RBF method with Multiquadric bases 

gives more accurate solutions than the homotopy perturbation 

method by 18 terms. As x  increases, the Error of HPM is 

increased rapidly, but RBF Error vanishes. 

5. Conclusion 

This paper describes using Radial basis functions to solve 

integral equations, with a weakly singular kernel. The 

proposed method, is a meshless method, just uses a scattered 

set of collocation points, without any connectivity information 

between the collocation points. Two examples are presented to 

show the efficiency of the method. Numerical results at 

scattered points appeared in Tables 2 and 3. Exact and 

approximate solutions for two examples are plotted in Figures 

1 and 3. Figures confirms that errors is not significant and 

solutions are satisfactory even by a few number of basis 

functions. The behavior of the errors for Homotopy 

perturbation method and Radial basis functions is apparent in 

Figures 2 and 4 for two examples. A comparison with 

Homotopy perturbation method shows that RBF results in 

more accurate solutions than Homotopy perturbation method 

or Adomian decomposition method which are reported in [6]. 

The results of two solved examples are accurate enough for 

knowing this approach as a powerful device. From physical 

point of view, these figures show that in the RBF method, as 

x  increases, equilibrium appears. 

Table 2. Solutions and Errors for Example 1. 

x  
Exacty  

( )Ey  

2( ) = exp( /100)r rφ −  2( ) =1/ (1 )r rφ +  2
( ) = 1r rφ +  

10 ( )y x  
10| |Ey y−  

10 ( )y x  
10| |Ey y−  

10 ( )y x  
10| |Ey y−  

0.0130 0.00017021 0.00017026 4.3354e-08 0.00017112 9.0317e-07 0.00017027 5.5240e-08 

0.0675 0.00455197 0.00455194 2.6635e-08 0.00455079 1.1825e-06 0.00455193 3.4940e-08 

0.1603 0.02569455 0.02569460 5.2464e-08 0.02569624 1.6871e-06 0.02569754 2.9851e-06 

0.2833 0.08026019 0.08026009 9.6868e-08 0.08025590 4.2943e-06 0.08025913 1.0604e-06 

0.4256 0.18110372 0.18110373 1.3451e-08 0.18110999 6.2725e-06 0.18110412 4.0251e-07 

0.5744 0.32997806 0.32997792 1.3210e-07 0.32997235 5.7053e-06 0.32997729 7.6181e-07 

0.7167 0.51365558 0.51365527 3.1387e-07 0.51366105 5.4612e-06 0.51365605 4.6475e-07 

0.8397 0.70510412 0.70510411 1.1898e-08 0.70509947 4.6490e-06 0.70510354 5.7539e-07 

0.9325 0.86961534 0.86961540 6.5357e-08 0.86961939 4.0569e-06 0.86961571 3.7189e-07 

0.9870 0.97407674 0.97407674 2.0636e-09 0.97407264 4.0986e-06 0.97407624 4.9822e-07 

Table 3. Solutions and Errors for Example 2. 

x  
Exact

y  

( )Ey  

2
( ) = 1r rφ +  2( ) =1/ (1 )r rφ +  2( ) = 1/ 1r rφ +  

10 ( )y x  
10

| |
E

y y−  
10 ( )y x  

10| |Ey y−  
10 ( )y x  

10| |Ey y−  

0.0130 0.11422230 0.11262579 1.5965e-03 0.11261085 1.6115e-03 0.11263024 1.5921e-03 

0.0675 0.25974663 0.26016436 4.1772e-04 0.26017013 4.2349e-04 0.26014565 3.9901e-04 

0.1603 0.40036884 0.40101248 6.4363e-04 0.39988836 4.8048e-04 0.39993226 4.3658e-04 

0.2833 0.53226149 0.53222145 4.0049e-05 0.53259710 3.3560e-04 0.53297792 7.1643e-04 

0.4256 0.65235176 0.65206011 2.9166e-04 0.65214515 2.0661e-04 0.65175952 5.9224e-04 

0.5744 0.75791633 0.75799302 7.6694e-05 0.75810850 1.9217e-04 0.75816263 2.4630e-04 

0.7167 0.84658000 0.84641812 1.6187e-04 0.84638985 1.9014e-04 0.84637489 2.0511e-04 

0.8397 0.91635407 0.91638214 2.8074e-05 0.91651646 1.6240e-04 0.91644249 8.8420e-05 

0.9325 0.96567680 0.96559109 8.5710e-05 0.96555392 1.2288e-04 0.96558939 8.7405e-05 

0.9870 0.99345521 0.99346109 5.8756e-06 0.99335758 9.7631e-05 0.99349627 4.1062e-05 
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