
 

American Journal of Applied Mathematics 
2015; 3(6): 335-340 

Published online January 9, 2016 (http://www.sciencepublishinggroup.com/j/ajam) 

doi: 10.11648/j.ajam.20150306.24 

ISSN: 2330-0043 (Print); ISSN: 2330-006X (Online)  

 

Modeling and Numerical Simulation of River Pollution 
Using Diffusion-Reaction Equation 

Tsegaye Simon, Purnachandra Rao Koya
*
 

School of Mathematical and Statistical Sciences, Hawassa University, Hawassa, Ethiopia 

Email address: 
tsegaye_simon@yahoo.com (T. Simon), drkpraocecc@yahoo.co.in (P. R. Koya) 

To cite this article: 
Tsegaye Simon, Purnachandra Rao Koya. Modeling and Numerical Simulation of River Pollution Using Diffusion-Reaction Equation. 

American Journal of Applied Mathematics. Vol. 3, No. 6, 2015, pp. 335-340. doi: 10.11648/j.ajam.20150306.24 

 

Abstract: In the present study we have applied diffusion – reaction equation to describe the dynamics of river pollution and 

drawn numerical solution through simulation study. The diffusion-reaction equation is turn to be a partial differential equation 

since the independent variables are more than one that include spatial and temporal coordinates. The diffusion-reaction 

equation is widely applied to environmental studies in general and to river pollution studies in particular. River pollution 

models are special cases and are included in the broad area known as environmental studies. The diffusion – reaction equation 

is characterized by the reaction term. When the reaction term depends on the concentration of the contaminants then the 

original single diffusion-reaction equation will evolve to be a system of equations and this lead to analytical problems. The 

diffusion-reaction equations are difficult to solve analytically and hence we consider numerical solutions. For this purpose we 

first separate diffusion and reaction terms from the diffusion-reaction equation using splitting method and then apply numerical 

techniques such as Crank – Nicolson and Runge – Kutta of order four. These numerical methods are preferred because the 

systems of equations are solved accurately and efficiently. Detailed discussion of the results and their interpretations are 

included. 
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1. Introduction 

Advection – Diffusion – Reaction (ADR) equations are 

partial differential equations (PDEs) dependent on temporal 

and spatial coordinates. The ADR equations can be used to 

model mathematically a wide range of natural phenomenon 

and explain their dynamics with respect to time. The 

applications of the general advection-diffusion-reaction 

equations are wide and numerous. For instance ADR 

equations are used to solve pollutant transport models in 

scientific disciplines ranging from atmospheric studies 

through medical science to chemo taxis [1 – 5]. 

However, in the present study we have chosen the one-

dimensional Streeter – Phelps equation which describing the 

river self-purification model as a concrete example. The 

Streeter – Phelps equation is applied to model the amount of 

dissolved oxygen (DO) in a stream after waste water is 

discharged into the stream. The Streeter – Phelps model 

describes the amount of pollutant downstream as the 

pollutant travels with the stream velocity in the direction of 

the stream flow. When a pollutant is added to or introduced 

into a water source then the dissolved oxygen of the water 

decreases to a minimum level and then gradually recovers 

and finally reaches a saturation level. Further, following the 

Lagrangian approach we reduce the advection-diffusion-

reaction equation into diffusion – reaction equation [6 – 7]. 

The Diffusion-reaction systems are mathematical models. 

These models are used to explain how the concentrations of 

one or more substances are distributed in space and how 

these concentrations vary under the influence of the two 

processes viz., diffusion and reaction. Diffusion causes the 

pollutant substances to spread out in the river water and 

during the local chemical reactions the pollutant substances 

are transformed into each other [8 – 9]. 

The Diffusion-reaction systems are interesting on many 

levels, displaying phenomena such as pattern formation far 

from equilibrium, Turing structures, nonlinear waves such as 

solitons or spiral waves and spatial – temporal chaos. The 

efficient and accurate simulation of such systems, however, is 

difficult. This is because they couple a stiff diffusion term 
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with a typically strongly nonlinear reaction term. When 

discretized this leads to large systems of strongly nonlinear, 

stiff ODEs. There has been much activity over the last few 

years in developing time stepping algorithms to deal with 

such problems in the numerical analysis community. This 

community demonstrated the most popular numerical 

algorithm currently being used to solve diffusion-reaction 

equations. That is a second order central difference scheme in 

space, coupled with an explicit forward Euler time stepping 

scheme. This seems an attractive method for two reasons. 

Firstly it is easy to implement, and secondly many people 

feel that there is an element of ’overkill’ when using a highly 

accurate high order method for a problem that does not 

require accurate solutions. It is unattractive, however, in that 

it is both inaccurate for studying spatial – temporal chaos, for 

example and inefficient. Moreover finite-difference methods 

can sometimes lead to fake solution [5]. In this paper, we 

used some of this method and Crank – Nicolson method for 

discretization of diffusion term and Runge – Kutta of order 

four methods to solve reaction term. In order to find the 

numerical approximation of the given problem, splitting 

methods is also used [10 – 13]. 

2. Mathematical Model 

Suppose that a polluted river contains �  contaminants, 

with concentrations    �� , where  � =  1,2, . . . , � . Then a 

possible approach to model river purification to each of the 

chemical contaminants is given in (1) [14 – 15]. 

���� �
⁄ � + ������� ��⁄ � − �������� ���⁄ �� 
= ���� �⁄ �+ ���� + ��� , ∀ � = 1,2, … , �            (1) 

The physical interpretations of various terms, variables and 

parameters used in (1) are as follows:������� ��⁄ �represents 

advection, �������� ���⁄ ��  represents diffusion, ���� �⁄ � + ���� + ��� represent reaction,  �  measures 

distance along the direction of river flow, �  represents river 

velocity, � is cross – sectional area of the river, ��  is 

concentration of contaminant �,  ��  is net rate of addition of 

the suspension,  ��   is diffusivity,  ��   is the emission of the 

contaminant �,  �� is chemical reaction of contaminant � with 

other contaminants and 
 is the time. 

Since the chemical reaction  ��  depends on the 

concentrations  ��, ��, … , ����,  �� � , … ,  �! of the 

contaminants, equation (1) becomes coupled. This implies it 

is usually not possible to solve analytically. So to avoid this 

difficulty let  ��, … , �" be the concentrations of the � most 

important suspensions. Let  �" � be an appropriate measure 

of concentration of all other suspensions combined. Let �� be 

the concentration of dissolved oxygen (DO) which is the 

most important variable in the purification of river and any 

substance that consume oxygen considered as pollutant since 

organisms underwater die without oxygen; and let  �� be 

biochemical oxygen demand (BOD) which is the amount of 

oxygen the pollutants would need for their complete 

oxidization, per unit volume of river water. 

For the model (1) we assumed that advection along the 

river be neglected or ignored that is  � = 0 ; since we 

considered that the system is based on Lagrangian 

description. In the Lagrangian description the advection 

terms disappear, whereas they remain in the alternative 

Eulerian description. We assumed that pollution input has 

ceased and BOD can decay only by combining with oxygen 

or by flowing downstream; pollutants do not, for example, 

evaporate. Hence  �� = �� = 0 and also   �� = 0  since 

oxygen is destroyed by chemical reactions. We have also 

taken  � = 2 and  $ = 1. In view of these assumptions the 

purification model (1) simplifies to the system of equations 

(2) and (3) below: 

���� �
⁄ � =  �� ����� ���⁄ � +  ��� �⁄ � − $� ��    (2) 

���� �
⁄ � =  ������� ���⁄ � − $� ��                      (3) 

In the model described by (2) and (3),   �� denotes 

dissolved oxygen diffusion coefficient and ��  denotes 

biochemical oxygen demand diffusion coefficient. To find 

suitable expressions for  �� and the first and second order 

reaction rates $� and   $� of the model equations (2) and (3), 

let us consider that oxygen diffuses into the river from the air 

immediately above the water and the air – water interface 

behaves like a membrane that is permeable to oxygen. Then 

the flux of oxygen into the river per unit area is given 

by %��&�' −  ���� ℎ⁄ ). Here ℎ is the effective depth of the 

imaginary membrane,  �& is permeability to oxygen, and ' is 
the concentration of oxygen in the air immediately above the 

river surface. Up on multiplying the 

flux   %��&�' −  ���� ℎ⁄ )  with the width *  of the river, we 

obtain the rate at which oxygen enters the river per time 

duration and is given in (4) below: 

�q� A⁄ �   =  %�*�&�' −  ���� �ℎ⁄ ) =  -�' −  ���      (4) 

In (4), the parameter - = �*�& �ℎ⁄ � is a constant and has a 

dimension of a specific rate  .�� . The term   �' −�� � represents the oxygen deficit and  - plays the role of are 

aeration coefficient. Let us now specify the reaction 

rates  $� and  $� of the model described by (2) and (3). The 

chemical reaction that consumes dissolved oxygen of the 

river can be written symbolically as shown in (5) below: 

/��001234567894: ; + <=�1>ℎ4?�>@2 17894: 54?@:5 A → �CD15�>
�      (5) 

Suppose that the rate at which the reactants, namely 

dissolved oxygen and biochemical oxygen demand, convert 

into product is proportional to their concentration. Moreover, 

by definition of biochemical oxygen demand, both the 

reactants must convert at the same rate. This conjunction 

results in a relation and is given in (6) below: 

−$��� = −E���� =  −$���                   (6) 

In (6), the parameter E is a constant. The equation (6) also 

implies that  $� =  E�� and  $� = E��. Using equations (2), 

(3) and (4) and also introducing the function defined 

by  $���, �� � = E���� in the equation (6) we obtain a pair 
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of coupled non – linear system of partial differential 

equations given in (7) and (8) below: 

���� �
⁄ � =  �� ����� �7�⁄ � +  -�' −  ��� −  $���, ���  (7) 

���� �
⁄ � =  �� ����� �7�⁄ � − $���, ���.                 (8) 

Here in (7) and (8), the variable 7 represents the spatial 

coordinate and the parameter ' represents the dissolved 

oxygen saturation level. The function  $���, ��� represents 

the deoxygenation and takes the values as given in (9) below: 

$���, ��� =   F $��� , G�D0
 1D54D ��:4
�>0$����� , 04>1:5 1D54D ��:4
�>0H    (9) 

In the equation (9), without loss of generality $� can be 

chosen as  $� = �$� '⁄ �. The choice for $� in (9) guarantees 

that deoxygenation due to first and second order kinetics 

coincide when the river is fully saturated with dissolved 

oxygen, that is ' =  ��. 

3. First Versus Second Order Kinetics 

The vast majority of literature on environmental modeling 

[16 – 18] employs a first order kinetic model for the 

deoxygenation process. This has the sizable benefit of 

linearization of the problem and, if the diffusive effects are 

ignored, actually permitting an exact solution. However, we 

will now assume that if the river is even moderately polluted, 

then second order kinetics are in order. 

4. Numerical Simulations 

Let us solve the system of equations (7) and (8) with 

second order kinetics. As a test example, we make use of the 

system of equations given in (10) and (11) below: 

���� �
⁄ �  =  ������� �7�⁄ � + -�' − ��� −  $�����  (10) 

���� �
⁄ �   =  ������� �7�⁄ �  − $�����                        (11) 

Together with the system of equations (10) and (11), for 

the purpose of numerical simulation, let us restrict the 

independent variables to the regions 0 ≤ 7 ≤  1  and  
 ≥ 0. 

The boundary conditions are considered as  ���0 , 
� = ���1 , 
� = 1 and   ���0 , 
� =  �� �1 , 
� = 0 . The initial 

conditions are considered as ���7 , 0� = 1 and ���7 , 0� = 6 . 
Also, the parametric values are chosen as  - = 3, ' =1 and  $� = 1. 

4.1. Numerical Simulation for Zero – Diffusion 

We begin by considering the case when the diffusion can 

be taken to be zero, i.e.  �� =  �� = 0 . In this case the 

system of partial differential equations (10) and (11) becomes 

a system of ordinary differential equations given in (12) and 

(13) below. This corresponds to a well – mixed case. Thus, 

we are only studying the effect of self –purification, without 

considering the spatial distribution. Let the time interval of 

the integration is  � 
& , 
MNO� = �0, 20 � and the number of 

steps or subintervals in to which the time interval is divided 

be P = 200. Then the time durations required per one step 

is  ∆
 = ��
MNO − 
&� P⁄ � = 0.1. 

 �5�� 5
⁄ �  = -�' −  ��� − $� �� ��            (12) 

 �5�� 5
⁄ �  =  − $� ����                                 (13) 

We now employ the method of Runge – Kutta of order – 

four on the system of equations given in (12) and (13). For this 

very purpose we consider the conditions and parametric values 

given just below the system of equations (10) and (11). The 

results of the simulation study are given in Figure 1. 

 

Figure 1. Numerical simulation of the system of equations given in (12) and 

(13). 

The carrying capacity of dissolved oxygen is considered to 

be one unit, i.e.  ���
� ≤ 1. If at any time  ���
� = 1 then the 

self-purification system of the water is not active. But, for 

any reason if at any time  ���
� < 1 then the self-purification 

system of the water becomes active and helps the dissolved 

oxygen to boost up to reach its carrying capacity i.e.  ���
� =1. As long as the dissolved oxygen does not reach its carrying 

capacity the self – purification system does not become 

inactive. But, when the dissolved oxygen reaches its carrying 

capacity, the self – purification system becomes inactive. 

Thus, the responsibility of the self – purification system of 

the water is to see always that the amount of dissolved 

oxygen be at or reach its carrying capacity or saturation level. 

In Figure 1, the blue and red curves respectively represent 

the amounts of dissolved oxygen  ���
� and the biochemical 

oxygen demand   ���
� at any time 
 in the water. At time  
 = 0 the amount of dissolved oxygen  ���
� = 1 and the 

amount of biochemical oxygen demand   ���
� = 6 . Since 

the biochemical oxygen demand  �� is positive, the  �� takes 

oxygen from   �� . As a result the biochemical oxygen 

demand   ��  and dissolved oxygen availability   �� are 

bothdecreasing. Now at this situation the self – purification 

capacity of the water becomes active. The water purification 

capacity helps  ��to do two things: (i) to reduce  �� to zero 

and (ii) to increase  �� to reach its carrying capacity one unit. 

This scenario is pictorially described. 

In other words, Figure 1 can be interpreted as follows: 

At   
 =  0 , someone puts waste or pollutant in the water 

with biochemical oxygen demand concentration 6 times as 
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high as dissolved oxygen concentration. The waste 

immediately reacts with the dissolved oxygen in the water 

causing the dissolved oxygen concentration to drop and also 

the biochemical oxygen demand concentration. After a while, 

the self-cleaning system of the water becomes active, so 

biochemical oxygen demand concentration goes down to 

zero and the dissolved oxygen concentration goes its normal 

value 1. 

4.2. Numerical Simulation for Nonzero – Diffusion 

We now consider that both the diffusion coefficients ��  and �� appear in the system of equations (10) and (11) are different 

from zero and see their effect through a simulation study. Note 

that in absence of the diffusion coefficients, i.e. �� = 0,  �� =0, the system of equations (10) and (11) reduces to a system of 

ordinary differential equations. But in presence of the diffusion 

coefficients i.e. �� ≠ 0 and �� ≠ 0 the system of equations 

(10) and (11) remain to be a system of partial differential 

equations. In general the spatial axis is considered in the 

interval   �@, *� , i.e.  @ ≤ 7 ≤ * . But, for the purpose of 

numerical simulation here we consider one unit length of 

spatial axis i.e.�@, *� =  �0, 1� and hence 0 ≤ 7 ≤ 1.  

We now discretize the spatial axis  0 ≤ 7 ≤ 1  into  � = 20 number of steps. Thus we have a step size  ∆7 =��* − @� �⁄ � =  0.05 . In general, the interval of the �UV step 

is given by  �@ + �� − 1�∆7, @ + � ∆7 �. But in our present 

case it is �0.05�i − 1�, 0.05i �  , ∀i =  0 , 1 , … , N. Applying 

the method of central difference in space, the system of 

equations (10) and (11) takes the form given by (14) and (15) 

below [19 – 22]: 

�Y �,� =  ��� ∆7�⁄ �Z��,� � −  2��,� +  ��,���[ 

+ -Z' − ��,�[ − $� ��,�  ��,�                   (14) 

�Y �,�  =   ��� ∆7�⁄ �Z��,� � −  2��,� + ��,���[ 

−$���,���,�                                               (15) 

In the system of equations (14) and (15), we have used the 

notations   �Y �,� =  \� ��,� �
⁄ ] and    �Y � ,� = \� �� ,�  �
⁄ ] . 

Also  �^ ,� =  �^ ,��
�  , 2 = 1 , 2 is a function of time. Let   �^ = \�^,�, … , �^,!��] for  2 = 1, 2. Now, the system of 

equations (14) and (15) can be expressed in a matrix form 

shown in (16) and (17). 

�Y � =  ��� ∆7�⁄ � ��� +  -�' I� – ��� 

−$���� ∗ ��� +  ��� ∆7�⁄ �b�              (16) 

�Y � =  ��� ∆7�⁄ � ��� − $���� ∗ ��� 

+��� ∆7�⁄ �b�                                      (17) 

Here in (16) and (17), the symbol  � represents a tri – 

diagonal matrix of order �� − 1 × � − 1�  i.e.  � =
D�5�@9 %1, −2, 1) ∈ e!��×!�� . Also the symbols  b� = ���,&, … , ��,!�f ,  b� =  ���,&, … , ��,!�f and  I� = �1,1, … ,1�f are all vectors of dimension  �� − 1�.  Further, ��� ∗ ��� represents an element by element product of the 

vectors �� and ��. To discretize the time coordinate, let us 

consider the integration on the time interval  �
& ,  
MNO� = �0 , 20� and divide the time interval into  P = 200 number 

of steps. Then the step size of time coordinate is given 

by  ∆
 =  ��
MNO −  
&� P⁄ � = 0.1 . Up on splitting the 

diffusion equation from the reaction equation from the 

system of equations given by (16) and (17) we get a system 

of equations as shown in (18) and (19).  

�Y � =  ��� ∆7�⁄ � ��� + ��� ∆7�⁄ �b�              (18) 

�Y � =  ��� ∆7�⁄ � ��� + ��� ∆7�⁄ �b�              (19) 

In short we can rewrite the system of two equations (18) 

and (19) into a single equation as  �Y ^ = ��^ ∆7�⁄ ����^ + *^  � , where 2 = 1, 2  is an index, for diffusion (12) and 

reaction (13) equations respectively. Note that splitting 

diffusion from the reaction term has computational 

advantages since simultaneous coupling over space and the 

various chemical species is then avoided, and it also offers 

room for massively parallel computing [23 – 25]. Using step 

size  ∆
 solving the system of equations (18) and (19) by 

trapezoidal rule or Crank – Nicolson method and also solving 

the reaction equation (13) by Runge – Kutta of order four 

method, we have the simulation results with different 

diffusion coefficients as shown in Figure 2. 

 

Figure 2. Numerical solution of (16) and (17) with  ��  =  0.001 and  ��  = 0.0001. 

The Figure 2 represents concentrations of the dissolved 

oxygen  ���7, 
�  and that of the biochemical oxygen 

demand  ���7, 
�. Figure 2 is obtained by the simulation study 

of the equations (16) and (17) with the conditions and 

parametric values given just below the system of equations 

(10) and (11). We have applied trapezoidal rule or also known 

as Crank – Nicolson method on the diffusion term and the 

method of Runge – Kutta of order four on the reaction term of 

the system of equations (16) and (17). In the case that the 

diffusion terms different from zero, we ignore all variation 

along the river and all variations in depth, and only look at a 

cross – section of a river of width one unit i.e. normalized. 

Again, at time t = 0, waste water is poured into the water, all 

over. But we assume that the water at the boundaries cleans. So 
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there, the oxygen concentration is 1, and the BOD 

concentration is zero. But then, in addition to the self – 

cleaning effect from the reactive term, we get diffusion of the 

clean water from the boundaries, which makes the river cleans 

faster than if we did not have this effect. 

 

Figure 3. Numerical solution of (16) and (17) with ��  =  0.1 and ��  = 0.01. 

 

Figure 4. Numerical solution of (16) and (17) with  ��  =  10 and ��  =  1. 

In Figures 2 to 4 the profile for varying the diffusive term, 

we saw that when the rate of diffusion is high then the 

concentration of contaminant decreases faster and also the 

river cleans faster. 

5. Conclusions 

In this paper we have presented one example of advection-

diffusion-reaction equation of the environmental or river 

water purification model and solved it by numerical methods. 

We considered the equation based on Lagrangian description. 

Since in Lagrangian description advection term disappears 

and the diffusion-reaction equation remains. A system of 

diffusion-reaction equations are coupled by the term of 

reaction. This system of equations (7) and (8) are decoupled 

when the first order kinetics are used and are coupled when 

second order kinetics are used. However, in this study we 

described numerical approximation techniques for the system 

of equations (7) and (8) by employing second order kinetics. 

The algorithm has been implemented in Matlab and 

generated the simulated graphics. 
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