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Abstract: Megnetohydrodynamic (MHD) convection flow of two immiscible fluids in an inclined channel in the presence of 

an applied magnetic field is investigated. Both fluids are assumed to be Newtonian and heat generating or absorbing and 

having constant transport properties. The channel walls are maintained at different temperature. The resulting coupled and non-

linear equations of momentum and energy are solved analytically by using the regular perturbation method valid for small 

value of ε=PrEc. The influence of various parameters on velocity field and temperature field for heat absorption and heat 

generation are discussed with the aid of the graphs. 
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1. Introduction 

The convective flow and heat transfer of viscous 

incompressible electrically conducting fluid through a 

channel or pipe in the presence of a transverse magnetic field 

has important applications in magnetohydrodynamic (MHD) 

generator, pumps accelerators, flow meters, nuclear reactor 

and geothermal system. Hartmann [1] carried out the pioneer 

work on the study of steady MHD channel flow of a 

conducting fluid under a uniform magnetic field transverse to 

an electrically insulated channel. Later, effect of magnetic 

field on forced convection and heat transfer was studied by 

Seigal [2]. Osterle and Young [3], Perlmutter and Seigal [4], 

Romig [5] and Umavathi [6], investigated heat transfer in 

MHD flow between vertical parallel plates. 

Many problems in the field of plasma physics, aeronautics, 

geophysics and petroleum industry involves multi layered-

fluid flow. In the petroleum industry, as well as in other 

engineering and technological fields, a stratified two-phase 

fluid flow often occurs. For example, in geophysics, it is 

important to study the interaction of the geomagnetic field 

with the hot springs/fluids in geothermal regions. Once the 

interaction of the geomagnetic field with the flow field is 

known, then one can easily find the temperature distribution 

from the energy equation. Thome [7] initiated the first 

investigation associated with the two phase flow. Lohrasbi 

and Sahai [8], dealt with two-phase MHD flow and heat 

transfer in a parallel-plate channel. Malashetty and Leela [9, 

10], have analyzed the Hartmann flow characteristics of two-

fluids in a horizontal channel. Chamkha [11] considered the 

steady, laminar flow of two viscous incompressible 

electrically conducting and heat generating or absorbing 

immiscible fluids in infinitely long porous and nonporous 

channels. Flow and Heat Transfer of Two Micropolar Fluids 

Separated by a Viscous Fluid Layer investigated by J. C. 

Umavathi, A. J. Chamkha, and M. Shekar [17]. 

In recent years, the various studies dealing with convective 

heat transfer in an inclined channel have been reported. The 

study showed that the tilting of the channel have significant 

effect on the flow and heat transfer characteristic. Prakash 

[12], investigated the liquid flowing in an open inclined 

channel. The viscous flow in an open inclined channel with 

naturally permeability bed was presented by Verma and Vyas 

[13]. Wang and Robillard [16], analyzed the mixed 

convection in an inclined channel with localized heat 

sources. A two-phase MHD flow and heat transfer in an 

inclined channel had been investigated by Malashetty et al. 
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[14, 15]. Double-Diffusive Natural Convection in Inclined 

Finned Triangular Porous Enclosures in the Presence of Heat 

Generation/Absorption Effects had been discussed by A.J. 

Chamkha et al [18]. 

None of the above mentioned authors considered the two 

phase MHD convective flow of electrically conducting fluid 

through an inclined channel with heat generation and 

absorption. This problem has been solved analytically for 

velocity as well as temperature distribution by using the 

regular perturbation method for small value of  �(= �� ��). 

The influence of various dimensionless parameters on 

velocity and temperature field has been discussed 

graphically. 

2. Mathematical Formulation 

Consider steady, laminar, hydromagnetic and fully 

developed flow of two immiscible fluids through an inclined 

infinitely long channel. The channel walls are maintained at 

different temperatures 
��  and 
�
 (
�� > 
�
)  extending 

in the � −  and � −  directions making an angle �  with the 

horizontal. A uniform magnetic field of strength �� is applied 

transverse to the flow field. The regions 0 ≤ � ≤  ℎ� 

(Region-I) and − ℎ
  ≤ � ≤  0  (Region-II) are occupied by 

viscous incompressible and electrically conducting fluids. 

Both fluids are assumed to be Newtonian and heat generating 

or absorbing and having constant properties except the 

density in the buoyancy term of the momentum equation. 

The governing equation of the motion and energy under 

the above stated assumptions can be written as 

�� ����
��� + !�"#�(
� − 
�
)$%&� − '���
(� = )*

)+        (1) 

and 

,� ��-�
��� + �� .���

�� /
 + '���
(�
 ± 1�(
� − 
�
) = 0,    (2) 

where (�  and 
�  are the components of velocity and 

temperature respectively. !� , ��, '� , ,� ,  #�  and 1�  are density, 

viscosity, electrical conductivity, thermal conductivity, 

coefficient of thermal expansion and heat generation or 

absorption coefficient respectively. 

We also assume that the fluids in both regions share a 

common pressure gradient (3�/3�). The positive sign for 1�   
corresponds to heat generation and negative sign for heat 

absorption.  

The boundary and interface conditions on velocity and 

temperature are  

(�(ℎ�) = 0,                                      (3a) 

(�(0) = (
(0),                                (3b) 

(
(−ℎ
) = 0,                                   (3c) 

�� ��5
�� = �
 ���

��  67 � = 0,                      (3d) 


�(ℎ�) = 
��,                                  (4a) 


�(0) = 

(0),                                (4b) 



(−ℎ
) =  
�
                               (4c) 

and  

,� �-5
�� = ,
 �-�

��  67 � = 0.                      (4d) 

The boundary conditions indicate the no slip and 

isothermal condition at the walls of channel. The fluid 

velocity, temperature, shear stress and heat flux are 

continuous across the interface. 

Introducing the following dimensionless quantities in the 

equations (1) through (4) and  

��, = ��
8�; (�, = ��

�95; :� = -�;-<�
∆- ; > = ?5

?�; @ = A5
A� ;  ℎ = 8�

85 ;  & = C�
C5 ; D = E�

E5 ; 

$ = F�
F5 ; G� = HE585I∆-

J5� ; K = ��h�MN5
μ5 ; �P = μ5QR

S5 ; �T = U95�
QRVW ; XY = U95Z5

[5 ; � = 8�(\]
\^)

?5�95 ; _� = Q� Za�ba  

suppresses the dash (/) for our convenience, we get 

����
��� + .cP

dY/ e $%&� :� − �K
(� = f�            (5) 

and  

 
��g�
��� + ���Th .���

�� /
 + ���TiK
(�
 ± _�:� = 0,     (6) 

where e = D>&ℎ
, � = >$ℎ
, f = >ℎ
, h = A
j  and  i =

,ℎ
$. e, �, f, h and i are equal to 1 for region- I. 

The dimensionless boundary and interface conditions for 

velocity and temperature are: 

(�(1) = 0,                                    (7a) 

(�(0) = (
(0),                                 (7b) 

(
(−1) = 0,                                      (7c) 

��5
�� = . �

j8/ ���
��  67 � = 0,                         (7d) 

:�(1) = 1,                                         (8a) 

:�(0) = :
(0),                                  (8b) 

:
(−1) =  0                                      (8c) 

and 

�g5
�� = . �

l8/ �g�
��  67 � = 0.                     (8d) 
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3. Solution of the Problem 

The governing equations (5) and (6) are coupled and 

nonlinear because of buoyance force and the Ohmic 

dissipation term. In most of the practical problem the Eckert 

number is very small and hence the product m = ���T can be 

treated as perturbation parameter to find the solution of 

equations (5) and (6) using regular perturbation method. The 

solutions are assumed in the form of 

((�, :�) = n(�,�, :�,�o + mn(�,�, :�,�o + ⋯ … … … % = 1,2. (9) 

where (�� , :�� are solutions for the case m equal to zero. The 

quantities (�� and :��  are corrections relating to (�� and :�� 

respectively.  

Substituting the equation (9) in the equations (5) and (6) 

and equating coefficients of the like powers of m to zero, we 

get the following set of equations: 

Zeroth order 

����,t
��� + .cP

dY/ e $%&� :�,� − �K
(�,� = f�               (10) 

and 

��g�,t
��� ± _�:�,� = 0.                             (11) 

First order 

����,5
��� + .cP

dY/ e $%&� :�,� − �K
(�,� = 0        (12) 

and 

��g�,5
��� + h .���,t

�� /
 + iK
(�,�
 ± _�:�,� = 0.      (13) 

The corresponding boundary and interface conditions 7(a-

d) and 8(a-d) using equation (9) become 

Zeroth order 

(�,�(1) = 0,                                  (14a) 

(�,�(0) = (
,�(0),                         (14b)  

(
,�(−1) = 0,                               (14c) 

��5,t
�� = . �

j8/ ���,t
��  67 � = 0,            (14d) 

:�,�(1) = 1,                                    (15a) 

:�,�(0) = :
,�(0),                          (15b) 

:
,�(−1) =  0                                 (15c) 

and 

�g5,t
�� = . �

l8/ �g�,t
��  67 � = 0.                    (15d) 

First order 

(�,�(1) = 0,                                   (16a) 

(�,�(0) = (
,�(0),                         (16b) 

(
,�(−1) = 0,                                (16c) 

��5,5
�� = . �

j8/ ���,5
��  67 � = 0,               (16d) 

:�,�(1) = 0,                                   (17a) 

:�,�(0) = :
,�(0),                          (17b) 

:
,�(−1) =  0                                (17c) 

and 

�g5,5
�� = . �

l8/ �g�,5
��  67 � = 0.                 (17d) 

There are two different solutions for temperature fields 

corresponding to the case of heat absorption and heat 

generation fluids. 

Case I: Heat absorption  

The solutions of Equations (10), (11), (12) and (13) by 

using the boundary conditions 14(a-d), 15(a-d), 16(a-d) and 

17(a-d) with negative sign for _� are given as follows: 

Region- I 

Zeroth order 

:�,� = �� coshnx_��o + �
 sinhnx_��o                (18) 

(�,� = �{ cosh(K�) + �| sinh(K�) − *
}� − e~[�� coshnx_��o + �
sinh (x_��)]                                (19) 

First order  

:�,� = �� coshnx_��o + ��� sinhnx_��o − �� coshn2x_��o − �� sinh(2K�) −�� cosh(K�) +  ��� sinh(K�) +
��� sinh(�� �) + ��
 sinh(�~ �) + ��� cosh(�� �) + ��~ cosh(�~ �)  + ��{ �. coshnx_��o − ��| sinhn2x_��o  −

��� �. sinhnx_��o + ���                                                  (20) 

(�,� = ��� cosh(K�) + ��~ sinh(K�) + (�~ − ���) coshnx_��o + (�{ + ��{) sinhnx_��o +  �| coshn2x_��o +�� sinh(2K�) + �� � sinh(K�) + ��� cosh(K�) − ��� sinh(���) −  ���  sinh(�~�) − ��
  cosh(���) − ��� cosh(�~�) +
��~ � coshnx_��o + ��|  sinhn2x_��o − ��� � sinhnx_��o + ���                              (21) 

Region- II 

Zeroth order 
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:
,� = �� coshnx_
�o + �~sinh (x_
�)                                                                  (22) 

(
,� = �� coshnK√� �o + �� sinhnK√� �o − �*
�}� − e{[�� coshnx_
�o + �~sinh (x_
�)]                           (23) 

First order  

:
,� = ��� coshnx_
�o + ��
 sinhnx_
�o−G� coshn2K√��o − G� sinhn2K√��o −  G� cosh(G
�) + G�� cosh(G��) +
G�� sinh(G
�) − G�
 sinh(G� �) − G�� sinhn2x_
�o − G�~ cosh (2x_
�) + G�{ cosh(���) + G�| sinh(���) −

G���. sinh(x_
 �) + G���. coshnx_
�o + G��                                                       (24) 

(
,� = ��{ ��$ℎnK√� �o + ��| $%&ℎnK√��o + (>~ − >��)  ��$ℎnx_
�o + (>{ + >��)  $%&ℎnx_
�o 
+>|  ��$ℎn2K√��o + >� $%&ℎn2K√��o + >�  ��$ℎ(G��) − >�  ��$ℎ(G~�) − >��  $%&ℎ(G��) +  >��  $%&ℎ(G~�) 
+>�
 $%&ℎn2x_
 �o + >�� ��$ℎn2x_
 �o − >�~� $%&ℎnK√��o + >�{ � ��$ℎnK√��o 

− >�| �  $%&ℎnx_
�o + >�� � ��$ℎnx_
�o + >
�                                         (25) 

Case II: Heat Generation 

For the heat generation case, the equations (10), (11), (12) and (13) with boundary conditions 14(a-d), 15(a-d), 16(a-d) and 

17(a-d) are solved for positive sign of _�. The solutions are given as follows: 

Region- I 

Zeroth order 

:�,� = �� $%&(x_��) + �
 ��$(x_��)                                                            (26) 

(�,� = �{�}� + �|�;}� − *
}� + h
{�� $%&(x_��) + �
 ��$(x_��)}                                (27) 

First order 

:�,� = �� sinnx_��o + ��� cosnx_��o − 6��
}� − 6~�;
}� + 6{ cosn2x_��o − 26|�}� cosnx_��o 
−26��}� sinnx_��o − 26��;}� sinnx_��o − 26� �;}� cosnx_��o + 6�� sinn2x_��o + 6���}�+ 6�
�;}� 

+6�� � cosnx_��o − 6�~ � sinnx_��o − 6�{                                                     (28) 

(�,� = ����}� + ��~�;}� + &� sinnx_��o + &
��$nx_��o + &��
}� + &~�;
}� +  &{ cosn2x_��o + &| sinn2x_��o −
&�� �}� + &���;}� + &��}� sinnx_��o −  &���}� cosnx_��o − &���;}� sinnx_��o + &�
�;}� cosnx_��o +

&�����$nx_��o −  &�~ sinnx_��o − &�{� $%&nx_��o − &�| cosnx_��o − &��                                             (29) 

Region- II 

Zeroth order 

:
,� = �� $%&(x_
�) + �~ ��$(x_
�)                                                                (30) 

(
,� = ���}√� � + ���;}√�� − *
�}� + h�{ ��$%&(x_
�) + �~ ��$(x_
�)}                                      (31) 

First order 

:
,� = ��� sinnx_
�o + ��
 cosnx_
�o − "~�
}√�� + "{�;
}√�� − "| cosn2x_
�o − "��}√�� sinnx_
�o −
"��}√�� cosnx_
�o − "��;}√��cos (x_
�) + "���;}√�� sinnx_
�o + "�� sinn2x_
�o −

"�
 � cosnx_
�o +"�� � sinnx_
�o + "�~�}√�� + "�{�;}√�� − "�|                                             (32) 

(
,� = ��{�}√�� + ��|�;}√�� + �� sinnx_
�o + �
��$nx_
�o + ���
}√�� − �~�;
}√�� − �{ ��$n2x_
�o +
�| $%&n2x_
�o − D�� �}√�� + ����;}√�� + ���}√�� $%&nx_
�o − ����}√�� ��$nx_
�o − ����;}√�� $%&nx_
�o −

��
�;}√�� ��$nx_
�o − ������$nx_
�o − ��~ $%&nx_
�o + ��{� $%&nx_
�o + ��| ��$nx_
�o − ���       (33) 

It should be noted that the constants appearing in the 

equations (18)-(33) are defined in the Appendix section, 

since the problem involves large number of dimensionless 

parameters. However, for simplicity we fix some of them. 

The values for the parameters (�, X�, G�, �, @, &, D) are fixed 

as (−5, 5, 1, �/6, 1, 2, 2) for all the numerical computations. 
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4. Results and Discussion 

In this paper, we have analysed MHD convection flow and 

heat transfer for two immiscible fluids in an inclined channel 

with heat absorption and heat generation. We draw the 

following conclusions on the basis of graphs, which have 

been drawn to judge the variation of velocity and temperature 

fields with respect to the various parameters. We summarize 

the result in the following paragraphs. 

Fig. 1 shows the variation of velocity for different values 

of the height ratio ℎ  for the case of heat absorption. It is 

observed that the velocity of fluid increases with the increase 

of ℎ. For the large value of ℎ, the velocity profile for both 

regions is almost same at the interface line � = 0. 

 
Fig. 1. Velocity profile for different values of the height ratio �. 

 
Fig. 2. Velocity profile for different values of the viscosity ratio >. 

Fig. 2 shows the variation of velocity for different values of 

the viscosity ratio >. As the value of > increases, the velocity 

of the fluid increases in the both regions. It is observed that the 

velocity of the fluid in the region I is smaller as compared to 

the velocity of the fluid in the region II. 

The variation of the velocity profile with respect to the 

Grashof number G� is shown in fig. 3. It is noticed that as the 

value of Grashof number G� increases, the velocity of both 

fluids increases as expected. An increase in the Grashof 

number G� physically means increase of the buoyancy force 

which supports the flow. 

Fig. 4 exhibits that as Hartmann number K  increases, 

velocity field decreases. This is because the magnetic field 

slows down the velocity of fluid particles. This is classical 

Hartmann effect. The influence of heat absorption coefficient 

on the velocity profile is shown in the fig. 5. The heat 

absorption coefficient _  measures the amount of heat flux 

absorbed by the fluid particles. It is shown that the velocity 

of fluid particles decreases as the heat of absorption 

coefficient increases. 

 

Fig. 3. Velocity profile for different values of the Grashof number G�. 

 

Fig. 4. Velocity profile for different values of the Hartmann number K. 

 

Fig. 5. Velocity profile for different value of heat absorption coefficient _. 

 

Fig. 6. Temperature profile for different values of the height ratio �. 
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Fig. 6 shows the variation of temperature field with respect 

to the height ratio ℎ. It is observed that an increase in the 

value of ℎ increases the temperature field. It is also noticed 

that the temperature profiles are linear for the smaller values 

of ℎ, which indicates that the heat transfer is essential for 

conduction alone. 

Fig. 7 shows the influence of the thermal conductivity ratio @ on the temperature profile. It is found that the temperature 

field increases with the increase in the value of @. The effect 

of heat absorption coefficient _  on temperature profile is 

shown in the fig. 8. It is clear from the figure that the 

temperature decreases as the value of _ increases. 

 

Fig. 7. Temperature profile for different values of thermal conductivity 

ratio @. 

 

Fig. 8. Temperature profile for different values of the heat absorption 

coefficient _. 

 

Fig. 9. Temperature profile for different values of the height ratio �. 

 

Fig. 10. Temperature profile for different values of the thermal conductivity 

ratio @. 

Fig. 9 and fig. 10 display the effect of the height ratio � 

and the thermal conductivity ratio @  on the temperature 

distribution in the case of heat generation. It is observed that 

there is an increase in the temperature field when the values 

of the height ratio �  and thermal conductivity ratio @ 

increases. It has also been noticed that the magnitude of 

temperature profile is larger in region II as compared to the 

magnitude of temperature profile in region I. The 

temperature profiles for the case of heat generation are non- 

linear indicates that the convection heat transfer is prominent. 

Fig. 11 shows the effect of the angle of inclination � on the 

velocity profile. It is observed that velocity increases as angle 

of inclination increases. It happens due to the increase in the 

buoyancy force with inclination angle  �. 

 

Fig. 11. Velocity profile for different values of angle of inclination �. 

 

Fig. 12. Velocity profile for different values of the height ratio �. 
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Fig. 13. Velocity profile for different values of the viscosity ratio >. 

Fig. 12 and fig. 13 depict the effect of the height ratio ℎ 

and viscosity ratio >  on velocity profile in case of heat 

generation. It is evident that the velocity profile increases 

with the increase of the height ratio ℎ and the viscosity ratio >, but the magnitude of velocity is large in the region II. 

Fig. 14 and fig. 15 show the variation of velocity profile for 

different values of Grashof number Gr and Hartmann number 

M respectively. The velocity profile increases with the increase 

of Grashof number while it is decreases with the increase of 

Hartmann number M. Fig. 16 shows the variation of velocity 

profile for different values of heat generation coefficient. It is 

evident that the velocity of the fluid particles increases with an 

increase of the heat generation coefficient _. 

 

Fig. 14. Velocity profile for different values of the Grashof number G�. 

 

Fig. 15. Velocity profile for different values of the Hartmann number K. 

 

Fig. 16. Velocity profile for different values of heat generation coefficient _. 

5. Conclusion 

The problem of MHD convection flow of two immiscible 

fluids in an inclined channel is analyzed in the presence of 

magnetic field with heat generation and heat absorption. The 

governing coupled equations are solved analytically by using 

perturbation method for different values of the parameters. 

The main conclusions of the present analysis are as follows: 

1. The height ratio, viscosity ratio, Grashof number, angle 

of inclination and heat generation coefficient promote the 

velocity field. 

2. An increase in Hartmann number and heat absorption 

coefficient suppress the velocity and temperature profile. 

3. An increase in the height ratio, thermal conductivity, 

Grahof number and heat generation coefficient increase the 

temperature field. 

Appendix 

e� = @ℎM�5
��, e
 = sinhnx_�o coshnx_
o  e� coshnx_�o sinhnx_
o, e� � ��

�� . sin � 

e~ � �I
�5;}�, e{ � �.�I

�5;�}�,  e| � ��;�	*
�}� � ���e~  e e{	, e� � �� T� x�5;� �� T��x����  

}  

A� � P
M
   A~�c� coshnx¤�o � c
 sinh �x¤�	�  A� sinh �M	 

A� � CP
BM
  A A{�c� coshnx¤
o � c~ sinh �x¤
	�  A|cosh �M√B	 

A�� �  B� sinh�M	 coshnM√Bo  cosh�M	 sinh �M√B	 
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�� = �
}�;�5, �
 = �

~}�;�5, �� = x_� + K, �~ = x_� − K, �{ = �
�I�;�5, �| = �

���;�5 

�� = ���nT5�;T��o
|  (}�

�5 − 1), �� = 2K
�{�|�
, �� = 2��{��, ��� = 2��|�� 

��� = Ke~�|��(���| + �
�{), ��
 = Ke~�~�{(���| − �
�{), ��� = Ke~�|�~(�
�| − ���{) 

��~ = Ke~���{(���{ + �
�|), ��{ = *��T�
x�5 , ��| = ���T5T�

� ( }�
�5 + 1), ��� = *��T5

x�5  

��� = �

K~_� + K


_�
(�{
 + �|
) + e~
2 (��
 + �

) �K


_� + 1  

h� = sinnx_�o cosnx_
o + e� cosnx_�o sinnx_
o, h
 = �I
�5§}�, h� = �.�I

�5§�}� 

h~ = *
}� − h
{��$%&(x_�) + �
 ��$(x_�)}, h{ = *

�}� + h�{ ��$%&(x_
) − �~ ��$(x_
)} 

h| = *
}� − �*

�}� − h
 �
 + h��~, h� = �
} (¨I�Ix��

j8 − h
��x_�), h� = h| − h~�} + h{�}√� 

h� = h� + h~�} + @�h{�}√�, h�� = h�@� + h� + (h�@� − h�)�
}√� 

h�� = (@� + 1){1 − �
}(�§√�)} + (@� − 1){�
}√� − �
}} 

 h�
 = h�(1 − �
}) − h�(1 + �
}), 

G� = �
�}�;��, G
 = �

~�}�;��, G� = x_
 + �K
 

G~ = x_
 − �K
, G{ = �
c��;��, G| = �

cI�;��, G� = K
G
(��
 − ��
)(i − �h)/2 

G� = K
G
����(i + �h), G� = eK
e{G{(�~�� − ����)(i − �hx_
) 

G�� = eK
e{G|(���� + �~��)(i + �hx_
), G�� = eK
e{G{(�~�� + ����)(i + �hx_
) 

G�
 = eK
e{G|(���� − �~��)(i − �hx_
), G�� = .����� TIT�
� / .©}�

�� + h/ 

G�~ = .����� nTI�;T��o
| / .©}�

�� − h/, G�{ = 
�*©c5}�Tª
�}� , G�| = 
�*©c5}�T«

�}� , G�� = ��*©}���TI
�}�x��  

G�� = ��*©}���T�
�}�x�� , G�� = �©*�

��}��� + }�(©§�¨)

�� (��
 + ��
) + �����


 (��
 + �~
) .©}�
�� + h/ 

6� = 1
4_� + K
 ,  6� = 1

4K
 + _� , 6
 = 1
K
 + _� ,  6� = 2K
6��{
,  6~ = 2K
6��|
 

6{ = ¨��
| (��
 − �

)(1 − }�

�5), 6| = 6��{h
(�
K
 + 2�
_� − K��x_� ) 

6� = 6��{h
(��K
 + 2��_� + K�
x_� ), 6� = 6��|h
(��K
 + 2��_� − K�
x_� ) 

6� = 6��|h
(�
K
 + 2�
_� + K��x_� ), 6�� = �5��¨��
� (}�

�5 − 1), 6�� = 2��{6
 

6�
 = 2��|6
, 6�� = *¨��5
x�5 ,  6�~ = *¨���

x�5 , 6�{ = *�
}��5 + ¨��


 (1 + }�
�5)(��
 + �

) 

D� = 2�K
h�x_
, D� = �K
��
, D
 = �K
��
, D� = _
��
h�
, D~ = _
 �~
 h�
  

D{ = 2�K
����, D| = D�����, D� = D��~��, D� = D�����, D� = D��~��, 

D�� = ���~h�
_
, �� =  �� = �5­®¯Z (x��)
�� , �
 = Q°­Z (x��)

�� , �~ = e�. �
, 
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�{ = �« ­®¯Zn}√�o § �5  �± ­®¯Z(})
�5t , �| = e� + ����, �� = �{ − e|, �� = �« Q°­Zn}√�o ; �± Q°­Z(})

�5t  

�� = ²~ + ���, ��� = ³� T´µ8nx��o;³¶ T´µ8nx�5o
�� , ��� = ³� �5 µ�·8nx��o§ µ�·8nx�5o

��  

��
 = ²� + e����, ��� = ,� + ��{, ��~ = } √� A¶ Q°­Zn}√�o;Aª Q°­Z (})
A�  

��{ = j8} A¶ ­®¯Zn}√�o;Aª ­®¯Z (})
A� , ��| = T5� Q°­Zn}√�o;A�

­®¯Z (}√�) , @� = √�
j8 

�� = T´µ(x��)
¨5 , �
 = �~ = �5 µ�·(x��)

¨5 , �� = �5 T´µ(x��)
¨5  , �{ = ¨5t

¨55,  �| = h~ �} − �{ �
}, 
�� = h{�}√� − �� �
}√�, �� = ¨5�

¨55 , �� = 855
¨5 , ��� = ℎ� + ��
,  ��� = e��� + ℎ� , 

 ��
 = 85�
¨5 , ��� = ¸�

¸I , ��~ = @
�} − ����
}, ��{ = @��}√� − ��|�
}√�, ��| = ¸�
¸I 

 ¹� = ��
h�
, ¹
 = �~
h�
,  ¹� = 
�*�ª
�}� , ¹~ = 2����h�, ¹{ = 2�~��h�, ¹| = 
�*�«

�}� , 

¹� = 2����h�, ¹� = 2�~��h� ¹� = 
�*�I¨I
�}� , ¹�� = 
�*��¨I

�}� ,  ¹�� = ���~h�
,  ¹�
 = ��*�
�}� + 2���� 

 "� = �
~�}�§��,  "
 = �

�}�(~��§�}�),  "� = �
�}�§��, "~ = "�(h
D� + iK
��
) 

"{ = "�(h
D
 − iK
��
),  "| = º¨�(»�;»I)§©}�(¼5;¼�)½
|��  

"� = "
[(2KD|h
 + 2iK�¹{)x�_
 − �K
h
D� + �iK~¹~] 
"� = "
[�K
h
D| + 2x�_
(Kh
D� − iK�¹~) − �iK~¹{] 

"� = "
[2x�_
(Kh
D� + iK�¹�) + �iK~¹� − �K
h
D�] 
"�� = "
[2x�_
(iK�¹� − Kh
D�) − �iK~¹� − �K
h
D� 

"�� = ©}�¼55;¨�»5t
��� , "�
 = ©}�¼±


x�� , "�� = ©}�¼5t

x�� ,  "�~ = iK
¹� "�, "�{ = iK
¹| "� 

"�| = [h
(D� + D~ − 2D{) + iK
(¹� + ¹
 + 2¹�
)]/2_
 

ℎ� = 6��
} + 6~�;
} − 6{ cosn2x_�o + ¾26| cosnx_�o + 26� sinnx_�o − 6��¿�} 

+[26� sinnx_�o + 26� cosnx_�o− 6�
}�;} − 6�� sinn2x_�o − 6��  cosnx_�o + 6�~  sinnx_�o + 6�{ 

ℎ
 = "~�;
}√� − "{�
}√� + "| cosn2x_
o − ¾"� sinnx_
o − "� cosnx_
o + "�~¿�;}√� 

+{"� cosnx_
o + "�� sinnx_
o − "�{}�}√� + "�� sinn2x_
o − "�
  cosnx_
o  −"��  sinnx_
o + "�| 

ℎ� = 6� + 6~ + 6{ + 26| + 26� − 6�� − 6�
 + 6�{ − "~ + "{ − "| − "� − "� + "�~  + "�{ − "�| 

ℎ~ = 2K6� − 2K6~ + 2K6| − 2K6� − K6�� + K6�
 − 6��,  ℎ{ = 6� + 6� + 6�� 

ℎ| = K√�(2"~ + 2"{ + "� − "� − "�~ + "�{) + "�
, ℎ� = −"� + "�� + 2"�� 

ℎ� = Àl8 8�§8¶
x�� Á + 2e�ℎ{ + ℎ�,  ℎ� = ℎ
 − ℎ� sinnx_
o,  ℎ�� = ℎ� − ℎ� cosnx_�o 

ℎ�� = ℎ� cosnx_�o + ℎ��cos (x_
), ℎ�
 = ℎ� sinnx_�o + ℎ�� A� sin (x_
) 

�� = �
�5§
}x�5, �
 = �

�5;
}x�5, �� = �
~�5;}�, �~ = e�����, �{ = e������, �| = e����� 

�� = �I�«
�}� , �� = �I�±


} , �� = �I�5t

} , ��� = e������, ��� = e��
��
, ��
 = e������, ��� = e��
��~, ��~ = e�����{, 
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��{ = 2x_ e� ��
��{, ��| = e�����|, ��� = e������, ��� = 2x_ e� ��
���, ��� = �I�5«
}� , 

>� = �
��§
}x���, >
 = �

��;
}x���, >� = �
~�5;�}� 

>~ = e� e G����, >{ = e� e G���
, >| = � �Ic«
��}� , >� = � �Ic«

��}� , >� = e e�>� G� 

>� = e e�>
 G��, >�� = e e�>� G��, >�� = e e�>
 G�
, >�
 = e e�>� G�� 

>�� = e e�>� G�~,  >�~ = � �Ic5�

}√� , >�{ = � �Ic5¶


}√� ,  >�| = e e� G�G�� 
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G��, >�� = e e� G�G��, >�� = 2 x_
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, &� = e���6
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} , &� = 26�(&�6| − e�6�), 
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, &�~ = 2x_�e�6��6
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��}� , 
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��� = "�n&�e√�"� + ee�"�o, ��� = "�n&�e√�"� − ee�"��o 
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, ��{ = ee�"��"� 
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−D� �;}√� + �� �}√� + ���;}√� sinnx_
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o 
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�}√� cosnx_
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 + �� − �~ − �{ − ��� − ��
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j}8, @| = x��
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(�� + 2�| + �� − ��� + ��~), 

@� = @�(2�� + 2�~ − ��� + ��
), @� = @{(�� − �� − ���), 
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 = 2&� − 2&~ − &�� − &�
 

@�� = @� + @� + @� − @�� − @�
 − (@��/K) 
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})n1 + �
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√�}o, Ä{ = Ä
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²� = �� coshn2x_�o + ��| sinhn2x_��o + �� sinh(2K) + �� cosh(K) − ��� sinh(K) −  ��� sinh(�� ) − ��
 sinh(�~)
− ��� cosh(��) − ��~ cosh(�~) − ��{  coshnx_�o + ��� sinhnx_��o − ��� 

H
 = G� coshn2K√�o − G� sinhn2K√�o + G� cosh(G�) − G�� cosh(G~) + G�� sinh(G�) −  G�
 sinh(G~) − G�� sinhn2x_�o
+ G�~ coshn2x_
o − G�{coshnK√�o + G�| sinhnK√�o +  G�� sinhnx_
o  + G�� coshnx_
o − G�� 

²� = ,²
x_�

(2K�� − K��� − ����� − �~��
 − ��{) − x_
n2KG�√� − G�G�� + G~G�
 − KG�|√� − G��o + 2e�i�| − 2G�� 

²~ = �� + �� − ��� − ��~ − ��� − G� − G� + G�� − G�~ + G�{ + G�� 

²{ = ²� − ²~ ��$ℎnx_�o 

²| = ²
 − ²� $%&ℎnx_
o 

,� = −(�~ + ��~−���) coshnxÇ�o − (�{ + ��{ − ���) sinhnxÇ�o − �| coshn2xÇ�o − �� sinh(2K) − �� sinh(K)
− �� cosh(K) + ��� sinh(��) + ��� sinh(�~) + ��
 cosh(��) + ��� cosh(�~) − ��| sinhn2xÇ�o − ��� 

,
 = −(>~ − >��−>��) coshnxÇ
o + (>{ + >�| + >��) sinhnxÇ
o − >| coshn2K√�o + >� sinhn2K√�o
− >� cosh(G�) + >� cosh(G~) −>�� sinh(G�) + >�� sinh(G~) + >�
 sinhn2xÇ
o
− >�� coshn2xÇ
o + >�~ sinhnK√�o + >�{ coshnK√�o − >
� 

,� = −�~ − �| + ��
 + ��� + ��� − ��� + >~ + >| + >� − >� + >�� − >�� + >
� 

,~ = �� − ��~ − 2K �� + �~ ���+ �� ��� − xÇ�( �{ + ��{ + 2 ��|) + À 1
>ℎÁ {>�{ + >�� + 2K√� >� − >�� G� + >�� G~

+ xÇ
( >{ + >� + 2 >�
)} 

,{ = (>ℎK) cosh(K) sinhn K√�o + (K√�) sinh(K) cosh (K√�) 

,| = ,� − ,���$ℎ (K) 

,� = K√�,
 − >ℎ,~ sinh (K√�) 
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