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Abstract: Megnetohydrodynamic (MHD) convection flow of two immiscible fluids in an inclined channel in the presence of
an applied magnetic field is investigated. Both fluids are assumed to be Newtonian and heat generating or absorbing and
having constant transport properties. The channel walls are maintained at different temperature. The resulting coupled and non-
linear equations of momentum and energy are solved analytically by using the regular perturbation method valid for small
value of e=PrEc. The influence of various parameters on velocity field and temperature field for heat absorption and heat

generation are discussed with the aid of the graphs.
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1. Introduction

The convective flow and heat transfer of viscous
incompressible electrically conducting fluid through a
channel or pipe in the presence of a transverse magnetic field
has important applications in magnetohydrodynamic (MHD)
generator, pumps accelerators, flow meters, nuclear reactor
and geothermal system. Hartmann [1] carried out the pioneer
work on the study of steady MHD channel flow of a
conducting fluid under a uniform magnetic field transverse to
an electrically insulated channel. Later, effect of magnetic
field on forced convection and heat transfer was studied by
Seigal [2]. Osterle and Young [3], Perlmutter and Seigal [4],
Romig [5] and Umavathi [6], investigated heat transfer in
MHD flow between vertical parallel plates.

Many problems in the field of plasma physics, aeronautics,
geophysics and petroleum industry involves multi layered-
fluid flow. In the petroleum industry, as well as in other
engineering and technological fields, a stratified two-phase
fluid flow often occurs. For example, in geophysics, it is
important to study the interaction of the geomagnetic field
with the hot springs/fluids in geothermal regions. Once the
interaction of the geomagnetic field with the flow field is

known, then one can easily find the temperature distribution
from the energy equation. Thome [7] initiated the first
investigation associated with the two phase flow. Lohrasbi
and Sahai [8], dealt with two-phase MHD flow and heat
transfer in a parallel-plate channel. Malashetty and Leela [9,
10], have analyzed the Hartmann flow characteristics of two-
fluids in a horizontal channel. Chamkha [11] considered the
steady, laminar flow of two viscous incompressible
electrically conducting and heat generating or absorbing
immiscible fluids in infinitely long porous and nonporous
channels. Flow and Heat Transfer of Two Micropolar Fluids
Separated by a Viscous Fluid Layer investigated by J. C.
Umavathi, A. J. Chamkha, and M. Shekar [17].

In recent years, the various studies dealing with convective
heat transfer in an inclined channel have been reported. The
study showed that the tilting of the channel have significant
effect on the flow and heat transfer characteristic. Prakash
[12], investigated the liquid flowing in an open inclined
channel. The viscous flow in an open inclined channel with
naturally permeability bed was presented by Verma and Vyas
[13]. Wang and Robillard [16], analyzed the mixed
convection in an inclined channel with localized heat
sources. A two-phase MHD flow and heat transfer in an
inclined channel had been investigated by Malashetty et al.
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[14, 15]. Double-Diffusive Natural Convection in Inclined
Finned Triangular Porous Enclosures in the Presence of Heat
Generation/Absorption Effects had been discussed by A.J.
Chamkha et al [18].

None of the above mentioned authors considered the two
phase MHD convective flow of electrically conducting fluid
through an inclined channel with heat generation and
absorption. This problem has been solved analytically for
velocity as well as temperature distribution by using the
regular perturbation method for small value of &(= Pr Ec).
The influence of various dimensionless parameters on
velocity and temperature field has been discussed
graphically.

2. Mathematical Formulation

Consider steady, laminar, hydromagnetic and fully
developed flow of two immiscible fluids through an inclined
infinitely long channel. The channel walls are maintained at
different temperatures T,,; and T,,, (T,,; > T,.,) extending
in the x — and z — directions making an angle a¢ with the
horizontal. A uniform magnetic field of strength B, is applied
transverse to the flow field. The regions 0 <y < hy
(Region-I) and — h, <y < 0 (Region-II) are occupied by
viscous incompressible and electrically conducting fluids.
Both fluids are assumed to be Newtonian and heat generating
or absorbing and having constant properties except the
density in the buoyancy term of the momentum equation.

The governing equation of the motion and energy under
the above stated assumptions can be written as

where u; and T; are the components of velocity and
temperature respectively. p;, U;, 0;, K;, B; and Q; are density,
viscosity, electrical conductivity, thermal conductivity,
coefficient of thermal expansion and heat generation or
absorption coefficient respectively.

We also assume that the fluids in both regions share a
common pressure gradient (0P /dx). The positive sign for Q;
corresponds to heat generation and negative sign for heat
absorption.

The boundary and interface conditions on velocity and
temperature are

u;(hy) =0, (3a)

u1(0) = u,(0), (3b)

u,(—=h,) =0, (3c)

M= aty =0, 3d)

Ti(hy) = Ty, (4a)

T1(0) = T,(0), (4b)

T2(=h3) = Ty, (4c)

and

K=K aty = (4d)

The boundary conditions indicate the no slip and

isothermal condition at the walls of channel. The fluid
shear stress and heat flux are

a2y, . . 0P velocity, temperature,
Hi'gye +pigBi(Ti — Tup)sina — oiBu; = ax (1) continuous across the interface.
Introducing the following dimensionless quantities in the
and equations (1) through (4) and
dZTi du; 2
Kt + i (5) + 0iBguf + QT = Tuz) = 0, ()
=iy =Yg —TicTwe By KL P2, P2, Ba.
Yi hi’ui o 0= AT ’m_ﬂz’k_Kz‘h_h1'n_P1‘b_ﬁ1'
ap
_ 2.~ gBMAT ’2. _mcp o _ W, Wby o PG, _ hf
S_U_err_ ‘V% IM_BOhl ulipr_ Ky EC_CpAT’Re_ Vl’P_ﬂl"'_Ll’d)i_Qlki
suppresses the dash (/) for our convenience, we get u;(0) = u,(0), (7b)
(G 4o — BM?u. = u(-1) =0, (7¢)
07 + (Re)A sina §; — BM“u; = CP %)
duq 1 dﬂ _
and dy (mh) dy aty =0, (7d)
29, N2 0.(1) =1, 8
S+ PrED (S4) + PrECFM*u? + 6, =0, (6) (D) (82)
dy dy
. 6,(0) = 6,(0), (8b)
h A = bmnh? B = msh?,C =mh?,D == and F =
W ire mn ms m s an 0,(~1) = 0 (8¢)
Kh*s. A,B,C,D and F are equal to 1 for region- 1.
The dimensionless boundary and interface conditions for  and
velocity and temperature are:
40, _ (1)3d6, -
ay (kh) a Y= (8d)

ul(l) = 05 (73)
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3. Solution of the Problem

The governing equations (5) and (6) are coupled and
nonlinear because of buoyance force and the Ohmic
dissipation term. In most of the practical problem the Eckert
number is very small and hence the product € = PrE, can be
treated as perturbation parameter to find the solution of
equations (5) and (6) using regular perturbation method. The
solutions are assumed in the form of

(ui, 61) = (ui,O' 91"0) + 6(1{1"1, 91"1) + o i= 1,2 (9)

where u;, , 8;, are solutions for the case € equal to zero. The
quantities u;; and 6;; are corrections relating to u;, and 6,
respectively.

Substituting the equation (9) in the equations (5) and (6)
and equating coefficients of the like powers of € to zero, we
get the following set of equations:

Zeroth order

d?u;, Gr ,
Rt (£) 4 sina 6,5 — BM?u;o = CP (10)
and
dze;
00+ i = 0. (n
First order
2,,.
dd—;;l + (%) Asina 0;; — BM?*u;, =0  (12)
and
2. . 2
S+ D(SR) + FMPuE, £ ¢, = 0. (13)

The corresponding boundary and interface conditions 7(a-
d) and 8(a-d) using equation (9) become
Zeroth order

u; (1) =0, (14a)
U0 0) = uZ,O(O)a (14b)
Uyo(=1) =0, (14c¢)

Uy 9 = s cosh(My) + ¢g sinh(My) — % -

First order

fae - ()%= ary =, (14d)
010(1) =1, (15a)
81,0(0) = 6,0(0), (15b)
B0(-1) = 0 (15¢)

and
%‘e(ﬁ)"’% aty = 0. (15d)

First order

u; (1) =0, (16a)
u11(0) = uy,1(0), (16b)
uy1(-1) =0, (16¢)
dZ—;l = (ﬁ)ﬁ—;l aty =0, (16d)
6,,(1) =0, (17a)
0,1(0) = 6,,(0), (17b)
0,,(-1) =0 (17¢)

and
%: (i)%l aty = 0. (17d)

There are two different solutions for temperature fields
corresponding to the case of heat absorption and heat
generation fluids.

Case I: Heat absorption

The solutions of Equations (10), (11), (12) and (13) by
using the boundary conditions 14(a-d), 15(a-d), 16(a-d) and
17(a-d) with negative sign for ¢; are given as follows:

Region- 1

Zeroth order

010=01 cosh(\/ay) +c, sinh(\/ay) (18)
Ay cosh(\/ay) + czsinh(\/ay)] (19)

611 = cocosh({/@1y) + ¢y sinh({/d1y) — B; cosh(2,/¢1y) — Bg sinh(2My) —B,y cosh(My) + By, sinh(My) +
By sinh(B3 y) + By, sinh(B, y) + B;5 cosh(B; y) + By, cosh(B, y) + Bys y. cosh(,/q,’)ly) — Byg sinh(Z,/q,’)ly) -

Bi7 y. sinh(\/ay) + Byg (20)

Uy 1 = ¢q3 cosh(My) + ¢y sinh(My) + (I, — lig) cosh(J1y) + (s + 1y5) sinh(\/ay) + lgcosh(2,/p,y) +
l; sinh(2My) + lg y sinh(My) + lyy cosh(My) — l;, sinh(B3y) — l;; sinh(B,y) — l;, cosh(Bs;y) — l;53 cosh(B,y) +

L,y cosh(\/ay) + L sinh(Z\/Ey) -l ysinh(\/ay) + Lo

Region- 11
Zeroth order

2]
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0,0 = C3 cosh(@y} + c@sinh(@y) (22)
Uy = c; cosh(MVB y) + cg sinh(MVB y) — % — As[c; cosh(y/¢,y) + cysinh({/21)] (23)

First order

01 =¢C11 cosh(,/q,’)zy) + ¢z sinh(ﬂ/¢2y)—G7 cosh(ZMx/ﬁy) — Gg sinh(ZMx/ﬁy) — Ggcosh(G,y) + G,y cosh(Gsy) +
Gy, sinh(G,y) — Gy, sinh(G5 y) — Gy sinh(ZJd)zy) — G4 cOsh(2,/¢,y) + Gy5cosh(B;y) + G4 sinh(B,y) —
G17Y. Sinh(\/ $2y) + Gigy. COSh(\/ ¢23’) + Gyg (24)

Uyq = Cg5 cosh(M\/E y) + c16 sinh(M\/Ey) + (my —my;) cosh(@y} + (ms + my,) sinh(@y}
+mg Cosh(ZM\/Ey) +m, sinh(ZM\/Ey) + mg cosh(G3y) — mg cosh(G,y) — myq sinh(Gsy) + my, sinh(G,y)
+my, sinh(Z\/E y) +my3 cosh(Z\/E y) —myy sinh(M\/Ey) + mysy cosh(M\/Ey)
—Mye Y sinh(@y) +mygy cosh(@y) +myg 25

Case II: Heat Generation

For the heat generation case, the equations (10), (11), (12) and (13) with boundary conditions 14(a-d), 15(a-d), 16(a-d) and
17(a-d) are solved for positive sign of ¢;. The solutions are given as follows:

Region- 1

Zeroth order

010 = dy sin(\[$1y) + d; cos(\[$1y) (26)
Uy = dse™ +dge™V — % + D,{d, sin(\/ay) +d, COS(\/E_’V)} 27

First order

011 = dosin(\/¢1y) + dyo cos(y/p1Y) — aze® — ae MY + ag cos(2,/p,y) — 2ase™” cos(/¢1y)
—2a,eM sin(\/¢,y) — 2age ™7 sin(\/p1y) — 2as 6™ cos(\/p1y) + aso sin(2y/P1y) + ar €™ + a0 MY
+a3 ycos(\/ay) — Q4 ysin(\/ay) — Qs (28)

Uy = dyze™ +dye™ +ny sin(\/ay) + nzcos(\/ay) +nze?M + nye MY + ng cos(Z\/Ey) + ng sin(Z\/ay) —
n,y eM + ngye ™Y + ngeM” sin(\/p,y) — nype™” cos(\/p1y) — ny1e ™ sin(Jd1y) + nye ™M cos({/p,y) +
n13yC05(\/EY) — Nyg Sin(\/aJ’) — Ny5Yy Sin(\/aJ’) — Nye COS(\/EJ’) —Nyy (29)

Region- 11
Zeroth order
82,0 = d3 sin(y/$,y) + dy cos(y/ ¢2y) (30)
Upo = d7e"VBY + dge™™VBY — — 4 D { dysin(\[2y) + di o5 ([ P21)) (31)

First order

01 = diq Sin(\/EJ’) +dy; COS(\/@J’) - 94€2Mﬁy + gse_ZM\/Ey —Ye COS(Z\/EY) - 973M\/Ey Sin(\/EJ’) -
gse™B7 cos(\b2y) — goe ™M B¥ cos(\[$,) + groe MVEY sin(\/$,) + g1 sin(2y/,y) —
912y COS(\/EY) +913Y 51“(\/@3’) + 9149M\/§y + 9159_M\/§y — Y16 (32)

Uyp = dlSeM‘/Ey + dme_M‘/Ey +p, sin(\/ay) + pzcos(\/ay) + p3eZM‘/§y — pdte_z"”‘/gy —ps cos(Z\/Ey) +
P Sin(2/2y) — byy eMVBY + pgye™MVBY + poeMVBY sin(\[¢,y) — proe™VBY cos(Jp,y) — prie MVEY sin(\[py) —
p12e MV cos(\[$2y) — pr13ycos(2y) — prasin(\[$2y) + prsy sin(\[$2y) + prs cos(Vb2y) = vz (33)

It should be noted that the constants appearing in the  The values for the parameters (P, Re, Gr, a, k,n, b) are fixed
equations (18)-(33) are defined in the Appendix section, as (=5,5,1,7/6,1,2,2) for all the numerical computations.
since the problem involves large number of dimensionless
parameters. However, for simplicity we fix some of them.
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4. Results and Discussion

In this paper, we have analysed MHD convection flow and
heat transfer for two immiscible fluids in an inclined channel
with heat absorption and heat generation. We draw the
following conclusions on the basis of graphs, which have
been drawn to judge the variation of velocity and temperature
fields with respect to the various parameters. We summarize
the result in the following paragraphs.

Fig. 1 shows the variation of velocity for different values
of the height ratio h for the case of heat absorption. It is
observed that the velocity of fluid increases with the increase
of h. For the large value of h, the velocity profile for both
regions is almost same at the interface line y = 0.

84

absorption coefficient ¢ measures the amount of heat flux
absorbed by the fluid particles. It is shown that the velocity
of fluid particles decreases as the heat of absorption
coefficient increases.

1.2
Case- | : Heat Absorption
L p— Gr=5 e m—- -
- T T em h ™~ ~
08 |---- Gr=10 T T N
Gr=15 P 0
R NN
0.6 7o T
AP u S
/0 A
0.4 4 AN
7 M
W\
A\
0.2
0 T T T T T T T T T
-1 -0.8 -0.6 -0.4 -0.2 0 Y o2 0.4 0.6 0.8 u

Fig. 3. Velocity profile for different values of the Grashof number Gr.
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Fig. 1. Velocity profile for different values of the height ratio h.
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Fig. 2. Velocity profile for different values of the viscosity ratio m.

Fig. 2 shows the variation of velocity for different values of
the viscosity ratio m. As the value of m increases, the velocity
of the fluid increases in the both regions. It is observed that the
velocity of the fluid in the region I is smaller as compared to
the velocity of the fluid in the region II.

The variation of the velocity profile with respect to the
Grashof number Gr is shown in fig. 3. It is noticed that as the
value of Grashof number Gr increases, the velocity of both
fluids increases as expected. An increase in the Grashof
number Gr physically means increase of the buoyancy force
which supports the flow.

Fig. 4 exhibits that as Hartmann number M increases,
velocity field decreases. This is because the magnetic field
slows down the velocity of fluid particles. This is classical
Hartmann effect. The influence of heat absorption coefficient
on the velocity profile is shown in the fig. 5. The heat

0.2
0.1
0

-1 -0.8

-0.6 -0.4

y

-0.2 0 0.2 0.4

0.6 0.8 1

Fig. 4. Velocity profile for different values of the Hartmann number M.
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. 5. Velocity profile for different value of heat absorption coefficient ¢.
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Temperature profile for different values of the height ratio h.



85 Hasan Nihal Zaidi and Naseem Ahmad: MHD Convection Flow of Two Immiscible Fluids in an
Inclined Channel with Heat Generation / Absorption

Fig. 6 shows the variation of temperature field with respect
to the height ratio h. It is observed that an increase in the
value of h increases the temperature field. It is also noticed
that the temperature profiles are linear for the smaller values
of h, which indicates that the heat transfer is essential for
conduction alone.

Fig. 7 shows the influence of the thermal conductivity ratio
k on the temperature profile. It is found that the temperature
field increases with the increase in the value of k. The effect
of heat absorption coefficient ¢ on temperature profile is
shown in the fig. 8. It is clear from the figure that the
temperature decreases as the value of ¢ increases.

1.2
Case- | : Heat Absorption
1
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08 |---- k=05
—k=1.0
0.6

0.4

0.2

-1 -08 -06 -04 -02

Fig. 7. Temperature profile for different values of thermal conductivity
ratio k.
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Fig. 8. Temperature profile for different values of the heat absorption
coefficient ¢.
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Fig. 9. Temperature profile for different values of the height ratio h.
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Fig. 10. Temperature profile for different values of the thermal conductivity
ratio k.

Fig. 9 and fig. 10 display the effect of the height ratio h
and the thermal conductivity ratio k on the temperature
distribution in the case of heat generation. It is observed that
there is an increase in the temperature field when the values
of the height ratio h and thermal conductivity ratio k
increases. It has also been noticed that the magnitude of
temperature profile is larger in region II as compared to the
magnitude of temperature profile in region 1. The
temperature profiles for the case of heat generation are non-
linear indicates that the convection heat transfer is prominent.

Fig. 11 shows the effect of the angle of inclination « on the
velocity profile. It is observed that velocity increases as angle
of inclination increases. It happens due to the increase in the
buoyancy force with inclination angle «.
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Fig. 11. Velocity profile for different values of angle of inclination a.
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Fig. 12. Velocity profile for different values of the height ratio h.
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Fig. 13. Velocity profile for different values of the viscosity ratio m.

Fig. 12 and fig. 13 depict the effect of the height ratio h
and viscosity ratio m on velocity profile in case of heat
generation. It is evident that the velocity profile increases
with the increase of the height ratio h and the viscosity ratio
m, but the magnitude of velocity is large in the region II.

Fig. 14 and fig. 15 show the variation of velocity profile for
different values of Grashof number Gr and Hartmann number
M respectively. The velocity profile increases with the increase
of Grashof number while it is decreases with the increase of
Hartmann number M. Fig. 16 shows the variation of velocity
profile for different values of heat generation coefficient. It is
evident that the velocity of the fluid particles increases with an
increase of the heat generation coefficient ¢.

0.8
Case -II: Heat Generation |
0.7 -
------- Gr=5 u
06 |__-- Gr=10 1 .
05 Gr=15 17 N
Pl N
0.4 . 4 el N\
- P S \
-~ T \
0.3 PP, - N
// ----- \\ s
PRt a NV
0.2 P N N
7 A\
/l»” \‘\
0.1 - s
0 T T T T T T T T
-1 -0.8 -0.6 -04 -0.2 oY 02 04 0.6 0.8 1

Fig. 14. Velocity profile for different values of the Grashof number Gr.
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Fig. 16. Velocity profile for different values of heat generation coefficient ¢.

5. Conclusion

The problem of MHD convection flow of two immiscible
fluids in an inclined channel is analyzed in the presence of
magnetic field with heat generation and heat absorption. The
governing coupled equations are solved analytically by using
perturbation method for different values of the parameters.
The main conclusions of the present analysis are as follows:

1. The height ratio, viscosity ratio, Grashof number, angle
of inclination and heat generation coefficient promote the
velocity field.

2. An increase in Hartmann number and heat absorption
coefficient suppress the velocity and temperature profile.

3. An increase in the height ratio, thermal conductivity,
Grahof number and heat generation coefficient increase the
temperature field.

A= kh\/%, A, = sinh(\/a) cosh(@) + 4, cosh(\/a) sinh(@), A; = %.sina

A, A 4 _ _Ads A, = (z;—;z)P

T p-m2 5 T gy -BmM?

- Cl(A4 + A As), A7 =
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Vertical Two Phase Flow through a Rectangular Channel,

Argonne National Laboratory Report No. ANL 6854.
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