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Abstract: The effect of mass transfer on unsteady Hydromagnetic convective flow, of an incompressible electrically 

conducting fluid, past an infinite vertical rotating porous plate in presence of constant injection and heat source has been 

investigated. The non-linear partial differential equations governing the flow are solved numerically using the finite differences 

method. The effect of Hartmann's number, Grashof number for heat transfer, Grashof number for mass transfer, permeability 

parameter, Schmidt number, Heat source parameter, Prandtl number, Eckert number and rotational parameter on the flow field 

are presented graphically. A change on the parameters is observed to either increase, decrease or to have no effect on the 

profiles. The study has some useful information to engineers in the field of oil exploration, geothermal reservoirs, in petroleum 

and mineral industries, MHD generators, among many other areas. 
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1. Introduction 

In the past research, researchers have studied a wide 

variety of flow problems. Subhas et al. (2001) presented a 

numerical solution of two dimensional laminar boundary 

layer problems on free convection flow of an incompressible 

viscous-elastic fluid through a porous medium over a 

stretching sheet. It was observed among other things that the 

introduction of chemical species diffusion (modified Grashof 

number) leads to an increase of horizontal velocity profile 

either when heating or cooling of the fluid. This observation 

was found to be true in the presence of porosity parameter 

but with reduced magnitude. Makinde et al. (2003) discussed 

the unsteady free convective flow with suction on an 

accelerating porous plate. Rafael (2005) investigated fluid 

flow and heat transfer in a porous medium over a stretching 

surface with internal heat generation and by presence of 

suction, blowing and impermeability of the surface. He 

observed that velocity decreases and temperature increases 

with increasing permeability parameter. He also observed 

that suction decreases velocity while injection increases the 

velocity. Kinyanjui et al. (1998) studied the MHD stokes 

problem for a vertical infinite plate in a dissipative rotating 

fluid with Hall current and they later investigated the effect 

of both Hall and Ion-slip currents on the flow of heat 

generating rotating fluid system. They observed that for an 

Eckert value of 0.02, there was a decrease in the primary 

velocity profile with an increase in Rotational parameter. In 

the case of secondary velocity profiles there is initially a 

decrease with an increase in Rotational parameter and as the 

distance from the plate increases, the secondary velocity 

profile increased. They also observed that an increase in Hall 

parameter has no effect on the temperature profile but an 

increase in times causes an increase in the temperature 

profiles. Das et al. (2006) estimated the mass transfer effects 

on unsteady flow past an accelerated vertical porous plate 

with suction employing finite difference analysis. Das et al. 

(2007) investigated numerically the unsteady free convective 

MHD flow past an accelerated vertical plate with suction and 

heat flux. Naser and Elgazery (2008) analyzed numerically 
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the effects of heat and mass transfer from an isothermal 

vertical flat plate to a non-Newtonian fluid through a porous 

medium. It was found that as time approaches infinity, the 

values of friction factor, heat transfer and mass transfer 

coefficients approach the steady state values. Das and Mitra 

(2009) discussed the unsteady mixed convective MHD flow 

and mass transfer past an accelerated infinite vertical plate 

with suction. Recently, Das et al. (2009) analyzed the effect 

of mass transfer on MHD flow and heat transfer past a 

vertical porous plate through a porous medium under 

oscillatory suction and heat source. Tamana et al. (2009) 

analyzed heat transfer in a porous medium over a stretching 

surface with internal heat generation, suction or injection. 

They observed that velocity profile decreases with the 

increase of permeability parameter in both cases of injection 

and suction. Elbasheshy et al. (2010) studied unsteady 

boundary layer flow over a porous stretching surface 

embedded in a porous medium in presence of heat source. He 

observed that among other things, Nusselt number decreases 

with increase of porous parameter in the presence of heat 

source parameter and it also increases with suction. Ferdows 

et al. (2010) analyzed the problem of heat and mass transfer 

on natural convection adjacent to a vertical plate in a porous 

medium with high porosity. They observed that the velocity 

increases when porous parameter increases and porous 

parameter has an increasing effect on temperature profiles. 

Das et al. (2010) investigated the Hydromagnetic convective 

flow past a vertical porous plate through a porous medium 

with suction and heat source. Kang'ethe et al. (2012) 

analyzed various parameters on unsteady MHD laminar 

boundary layer flow of an incompressible, electrically 

conducting viscous Newtonian fluids past a stretching sheet 

embedded in porous media in a rotating system with heat and 

mass transfer. They concluded among other things that the 

rate of heat transfer near a stretching surface in a rotating 

system is influenced by magnitude of the primary velocity 

profiles rather than by the magnitude of the secondary 

velocity profiles. They also noted that absence of rotation 

leads to absence of secondary velocity profiles. Despite the 

intensive investigation on various areas of MHD by the 

above mentioned scientists and mathematicians, little has 

been researched on the effects of mass transfer on unsteady 

MHD free convective flow past a vertical rotating porous 

plate in a porous medium with heat source and constant 

injection. 

2. Formulation of the Problem 

Consider the unsteady free convective flow of a viscous 

incompressible electrically conducting fluid past an infinite 

vertical rotating porous plate in presence of constant injection 

and heat source and transverse magnetic field. Let the x-axis 

be taken in vertically upward direction along the plate and y-

axis normal to it. The plate is infinite in X-direction and is 

non-conducting. The fluid and the plate are in a state of 

rotation about y-axis with uniform angular velocity .The 

plate is maintained at a uniform temperature . The free 

stream temperature and concentration are and

respectively. A magnetic field is applied perpendicular to 

the plate. Neglecting the induced magnetic field and the 

Joulean heat dissipation and applying Boussinesq’s 

approximation the governing equations of the flow are given 

by: 

 

Fig. 1. Configuration of the problem. 

Continuity equation: 

v
0

y

∂ =
∂

                                        (1) 

Momentum along x-axis: 

( ) ( )
22
0

0 2

uBu u u u
v 2 w gB gB C C

t y y k

∗
∞ ∞

σ∂ ∂ ∂ υ+ + Ω = υ − − + Τ − Τ + −
∂ ∂ ρ∂

                                    (2) 

Momentum along z-axis: 

22
0

0 2

wBw w w w
v 2 u

t y y k

σ∂ ∂ ∂ υ+ + Ω = υ − −
∂ ρ∂ ∂

       (3) 

Energy equation: 

( )
2

2
0

0 2
p p p

Qk u
v

t y C C Cy y
∞

 ∂Τ ∂Τ ∂ Τ υ ∂+ = + + Τ − Τ  ∂ ∂ ρ ρ∂ ∂ 
    (4) 

Concentration equation: 

Ω
w

T

T∞ C∞

0
B



 American Journal of Applied Mathematics 2016; 4(3): 114-123 116 

 

2

MY 2

C C C
v D

t y y

∂ ∂ ∂+ =
∂ ∂ ∂

                        (5) 

With initial and boundary conditions: 

( )t 0≤ u=o w o= 0v v= ( ) i t
w w e ω

∞Τ = Τ + ε Τ − Τ

( ) i t
w wC C C C e ω

∞= + ε − t=
2

πω , =0.2ε  at y 0=  

( )t o> u o→ , w o→ , ∞Τ → Τ C C∞→  As y → ∞  (6) 

The following non dimensional quantities are introduced, 

* 0y v
y =

υ
 

2
* 0tv

t
4

=
υ

 
*

0

u
u

v
=  

0η
υ =

ρ
 

*

0

w
w

v
=  

*

'2
0

4

v

υωω =  
*

w

T T
T

T T

∞

∞

−
=

−
 

*

w

C C
C

C C

∞

∞

−
=

−
 

2
o

*2
0

B
M

v

 σ υ=   ρ  
 

*2
0 p

i 2

v k
X =

υ
 

w
r *3

0

g (T T )
G

v

∞β υ −
=  

*
w

c *3
0

g (C C )
G

v

∞β υ −
=  o *2

0

R
v

Ωυ=  

p

r

C
P

k

ρ υ
= ( )

*2
0

c
p w

v
E

C ∞
=

Τ − Τ
0

*2
p 0

Q
S

C v

υ
=

ρ cS
D

υ=      (7) 

Where,  

are acceleration due to gravity, density, electrical 

conductivity, coefficient of kinematic viscosity, volumetric 

coefficient of expansion for heat transfer, volumetric 

coefficient of expansion for mass transfer, angular frequency, 

coefficient of viscosity, thermal diffusivity at constant 

pressure, temperature, temperature at the plate, temperature 

at infinity, concentration, concentration at the plate, 

concentration at infinity, specific heat at constant pressure, 

molecular mass diffusivity respectively. 

The governing equations in non-dimensional form are:
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3. Method of Solution 

The set of differential equations (8) – (11) subject to the 

boundary conditions (12), are highly nonlinear, coupled and 

therefore they cannot be solved analytically. Hence, the 

Crank-Nicolson method is used to obtain an accurate and 

efficient solution to the boundary value problem under 

consideration. Setting the finite difference averages for 

velocity, temperature and concentration as: 
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We Substitute (13), (14) and (15) in equations (8) to (11). 

Equation (8) becomes, 
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Multiplying all through by 2
i4 t y X∆ ∆  simplifying, and letting the coefficients of interior nodes to be: 
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We have, 
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Equation (18) can be represented in a tridiagonal matrix form as follows. For i=2, 3, 4….. (N-1) 
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                  (27) 

Equation (11) becomes: 

                     (28) 

Multiplying all through by 2
c4 t y S∆ ∆  simplifying, and letting the coefficients of interior nodes to be:

 
 

 

 

 

 

                                                                               (29) 

We have, 

                                                         (30) 

Equation (30) can be represented in a tridiagonal matrix form as follows. For i=2, 3, 4….. (N-1) 
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Fig. 2. Velocity profiles for different values of Hartmann number (M). 

 

Fig. 3. Velocity profiles for different values of Grc. 

 

Fig. 4. Velocity profiles for different values of Grt. 

 

Fig. 5. Velocity profiles for different values of Pr. 

 

Fig. 6. Velocity profiles for different values of X. 

 

Fig. 7. Velocity profiles for different values of Ec. 

 

Fig. 8. Velocity profiles for different values of S. 

 

Fig. 9. Velocity profiles for different values of Sc. 
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Fig. 10. Velocity profiles for different values of R0. 

Temperature Profiles 

 

Fig. 11. Temperature profiles for different values of Pr. 

 

Fig. 12. Temperature profiles for different values of Ec. 

 

Fig. 13. Temperature profiles for different values of S. 

Concentration Profiles 

 

Fig. 14. Concentration profiles for different values of Sc. 

From Fig. 2, it is observed that, an increase in Hartmann 

number M, leads to a decrease in both the primary and 

secondary velocity. This is because when M increases it 

means that, electromagnetic force increases and when 

transverse magnetic field is applied to an electrically 

conducting fluid, it gives rise to a force called the Lorentz 

force which acts against the flow if applied in the normal 

direction as in the present study. This resistive force has a 

tendency to slow down the motion of the fluid in the 

boundary layer. A weak magnetic field does not have much 

effect on velocity. When M = 0 means that magnetic force is 

so small compared to viscous force. 

From Fig. 3 increase in the Grashof number for heat 

transfer rtG , causes an increase in the primary velocity 

profiles and an increase in the magnitude of the secondary 

velocity profiles respectively. The Grashof number for heat 

transfer rtG  represents the effects of free convection currents 

and physically rtG 0>  corresponds to heating of the fluid 

(or cooling of the surface). Velocity of the fluid increases 

because the fluid flow is assisted by the free convection 

currents. As expected, increase in the velocity profiles is 

partly due to the enhancement of thermal buoyancy force. 

Fig. 4 shows that increase in Grashof number for mass 

transfer rcG  causes an increase in the primary velocity 

profiles. It also causes increase in the magnitude of the 

secondary velocity profiles. The velocity distribution attains 

a distinctive maximum value near the porous plate and then 

decays smoothly to approach a free stream value. The 

Grashof number for mass transfer rcG  defines the ratio of the 

species buoyancy force to the viscous hydrodynamic force 

hence, as expected, the fluid velocity increases due to 

increase in the species buoyancy force. Increase in species 

buoyancy force results into a higher species transportation 

rate away from the rotating plate, resulting into lower 

concentration. 

Fig. 5 shows the effect of the Prandtl number on both 

primary and secondary velocity profiles. The values of the 

Prandtl number are chosen Air at 
0

25 c  and one atmospheric 

pressure ( rP = 0.71), and water at 
0

25 c  ( rP = 7.00). It is 

observed that increasing the values of the Prandtl number, 

results in a decrease in the fluid velocity. This is because, an 

increase in Prandtl number means that the viscous forces are 
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increasing as the thermal forces increase hence decreasing 

the velocity of the fluid particles. 

Fig. 6 shows that increase in permeability parameter iX  

causes an increase in both the primary and secondary 

velocity profiles. It is observed that the fluid velocity 

increases and a peak value is attained near the plate then 

decays continuously to approach the free stream. Increasing 

iX  decreases the resistance of the porous medium since 

permeability physically becomes more with an increase in

iX . This increases the magnitude of the flow velocity. 

Fig. 7 shows that increase in Eckert number cE , causes an 

increase in both the primary and secondary velocity profiles. 

It is observed that the fluid velocity increases sharply and 

obtains a distinctive maximum value near to the wall of the 

porous plate and then decays continuously with increasing y 

distance. This is because when cE  is large, it implies that the 

kinetic energy dominates the boundary layer enthalpy which 

means that the particles or molecules of the fluid have high 

velocities. When the Ec number is small, it implies that the 

kinetic energy is small and hence the particles have low 

velocities, hence when cE  is increased, the velocity also 

increases. 

Fig. 8 shows the primary and secondary velocity profiles 

for different values of heat source S . It is observed that an 

increase in the heat source parameter S , results to an 

increase in the fluid velocity. The presence of a heat source 

produces a heating effect that increase velocity of the 

convection currents that move next to the surface of the 

rotating plate, leading to higher velocity profiles. 

Fig. 9 shows that increase in Schmidt number cS  causes a 

decrease in primary profiles and in the magnitude of the 

secondary velocity profiles respectively. The values of cS are 

chosen for the gases so that: Hydrogen c(S 0.1= ), Helium 

( cS =0.30 ), Water vapor ( cS =0.60 ). The Schmidt number cS  

signifies the ratio of the momentum to mass diffusivity. It 

quantifies the relative effectiveness of momentum and mass 

transport by diffusion in the hydrodynamic (velocity) and 

concentration (species) boundary layers. An increase in cS

leads to thinning of the velocity and the concentration 

boundary layers respectively. A large value of cS  means a 

presence of a heavier fluid and this implies a lower velocity 

of the fluid. 

Fig. 10 shows that that as rotation parameter oR  increases; 

the primary velocity u decreases whereas secondary velocity 

w increases. This indicates that rotation retards fluid flow in 

the primary flow direction, but it accelerates fluid flow in the 

secondary flow direction. This is due to the fact that the 

Coriolis force acts as a constraint in the main fluid flow when 

the plate is suddenly set into motion. It can be said that 

Coriolis force ends fluid flow in the primary flow direction to 

induce cross flow and secondary flow in the flow field. 

Absence of rotation translates to absence of the secondary 

velocity profiles. This means rotation can be used to control 

emergence of the secondary velocity profiles in a rotating 

system. 

The temperature of the flow suffers a substantial change 

with the variation of the flow parameters such as Prandtl 

number rP , Eckert number cE  and Heat source parameter S. 

The temperature profiles are in good agreement with those of 

Das et al. (2010). From fig. 11, it is observed that an increase 

in Prandtl Number leads to a decrease in temperature 

profiles. This is because the viscous forces dominate over 

thermal forces as Prandtl Number is raised. An increase in 

the Prandtl Number results to a decrease of the thermal 

boundary layer thickness and in general lowers the average 

temperature in the boundary layer. Smaller values of rP are 

equivalent to increase in the thermal conductivity of the fluid 

and therefore heat is able to diffuse away from the heated 

surface more rapidly than for higher values of rP . Thus, the 

temperature of water at 025 c  ( rP = 7.00) falls more rapidly 

compared to Air at 025 c  and one atmospheric pressure ( rP = 

0.71). Prandtl number controls the relative thickness of the 

momentum and thermal boundary layers. 

Fig. 12 shows that an increase in Eckert number cE  leads 

to an increase in temperature profiles. Hence the rate at 

which the fluid loses heat decreases as the Eckert Number is 

increased. This observation can be attributed to the viscous 

dissipation which increases with kinetic energy of the fluid 

particles. Increase in cE means the fluid absorbs more heat 

energy that is released from the internal viscous forces. This 

in turn increases the temperature of the convection currents 

due to increased thermal buoyancy forces. 

Fig. 13 shows the variation of different values of the heat 

source parameter to the temperature. It is observed that as S

increases, the temperature increase. Increase in heat source 

produces a heating effect hence increase in the temperature. 

The thermal boundary layer is weakened when heat source is 

present hence the increase in temperature. 

Fig. 14 shows that an increase in Schmidt number Sc 

causes decrease in the concentration of the fluid. The values 

of cS are chosen for the gases so that: Hydrogen c(S =0.1 ), 

Helium ( cS =0.30 ) and Water vapor ( cS =0.60 ). The 

concentration falls gradually and progressively for hydrogen 

in distinction to other gases. This is because an increase of 

cS  mean a decrease of molecular diffusivity, which results in 

decrease of concentration boundary layer. Hence, the 

concentration of species is smaller for higher values of cS . 

5. Conclusion 

A summary of effects of varying different flow parameters 

on the velocity, temperature and the concentration 

distribution of the flow is given below 

1. An increase in Hartmann's number M , Prandtl number 

rP  and Schmidt number cS  retards both the primary 

and secondary velocity of the fluid at all points. 

2. The effect of increasing Grashof number for heat 

transfer rtG , Grashof number for mass transfer rcG , 

permeability parameter iX , Heat source parameter S , 
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and Eckert number cE  is to accelerate both the primary 

and secondary velocity profiles at all points. 

3. Rotation parameter oR  retards fluid flow in the primary 

flow direction, but it accelerates fluid flow in the 

secondary flow direction. Absence of rotation translates 

to absence of the secondary velocity profiles. This 

means rotation can be used to control emergence of the 

secondary velocity profiles in a rotating system. 

4. An increase in Eckert number cE  and heat source 

parameter S , increases the temperature of the flow field 

at all points while a growing Prandtl number rP  retards 

the temperature of the flow. The temperature of the flow 

grows rapidly for small values r(P 1< ) and for higher 

values the effect reverses. 

5. The effect of increasing Schmidt number cS is to reduce 

the concentration boundary layer thickness of the flow 

field at all points. The concentration of species is 

smaller for higher values of cS . 
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