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Abstract: In this paper, we propose and analyze new two efficient iterative methods for finding the simple roots of nonlinear 

equations. These methods based on a Jarratt's method, Householder's method and Chun&Kim's method by using a predictor-

corrector technique. The error equations are given theoretically to show that the proposed methods have twelfth-order 

convergence. Several numerical examples are given to illustrate the efficiency and robustness of the proposed methods. 

Comparison with other well-known iterative methods is made. 
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1. Introduction 

The problem of solving a single nonlinear equation 

f�x� � 0 is fundamental in various branches of science and 

engineering. Recently, there are many numerical iterative 

methods have been developed to solve these problems. 

These methods are constructed by using several different 

techniques, such as Taylor series, quadrature formulas, 

homotopy perturbation technique and its variant forms, 

decomposition technique, variational iteration technique, 

and Predictor-corrector technique. For more details, see [1-

4, 6-32]. In this paper, we use the Predictor-corrector 

technique to construct some new iterative methods based on 

a Jarratt's method as a predictor with Householder's method 

and Chun &Kim's method as a correctors. The orders of 

convergence and corresponding error equations of the 

obtained iteration formulae are derived analytically to show 

that our proposed methods have twelfth -order 

convergences. Each one of these methods requires two 

evaluations of the function, three evaluations of first-

derivative and one evaluations of second-derivative per 

iteration. Therefore, our proposed methods have the same 

efficiency index is 12
1/6

 � 1.51309. To illustrate the 

performance of these new methods, we give several 

examples and a comparison with other well-known iterative 

methods is given. 

2. Preliminaries 

Definition 2.1 (see [12, 32]): Let α 	 R, x� 	 R, n = 0, 1, 

2,…. Then the sequence �
��  is said to converge to α  if 

lim���|x� � �| � 0. If, in addition, there exist a constant c≥ 

0, an integer n0 ≥ 0 and p ≥ 0 such that for all n>n0,  

, then �
��  is said to be 

convergence to α with convergence order at least p. If p = 2 

or 3, the convergence is said to be quadratic or cubic 

respectively. 

Notation 2.1: Let �� � 
� � �  is the error in the n
th

 

iteration. Then the relation 

���� � � ��
�

 !���
���

�                          (2.1) 

is called the error equation for the method. By substituting 

�� � 
� � �  for all n in any iterative method and 

simplifying, we obtain the error equation for that method. 

The value of p obtained is called order of convergence of this 

method which produces the sequence �
��. 

Definition 2.2 (see [3, 6]): Efficiency index is simply 

defined as 
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E.I.=p
1/m

                              (2.2) 

Where p is the order of the method and m is the number of 

functions evaluations required by the method (units of work 

periteration). 

3. Construction of the Method 

In this section, we recall some of the important methods 

such as Newton’s method, Jarratt’s method, Halley's method, 

Householder’s method Chun & Kim's method and Jarratt-

Halley's method in the following six Algorithms: 

Algorithm (3.1): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 


��� � 
� �
"�#$�

"%�#$�
                           (3.1) 

This is the well-known Newton's method, which has a 

quadratic convergence [5]. Its efficiency is 1.41421. 

Algorithm (3.2): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 


��� � 
� � &"�#$�
"�#$�

"%�#$�
                      (3.2) 

Where &"�#$� �
'"%�($��"%�#$�

 )"%(($)*+"%(#$) and ,� = 
� − +"(#$)
'"%(#$). This 

is known as Jarratt’s fourth-order method [4, 8]. Its efficiency 

is 1.58740. 

Algorithm (3.3): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 


��� = 
� − +"(#$)"%(#$)
+"%-(#$)*"(#$)"%%(#$)                (3.3) 

This is known as Halley's method [9, 10, 11, 13, 23], 

which has cubic convergence and its efficiency is 1.44225. 

Algorithm (3.4): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 


��� = 
� − "(#$)
"%(#$) { 1 + "(#$)"%%(#$)

+"%-(#$)  }               (3.4) 

This is known as Householder’s method, which has cubic 

convergence [21]. Its efficiency is 1.44225. 

Algorithm (3.5): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 


��� = 
� − "(#$)"%(#$){+�+"%-(#$)�"(#$)"%%(#$)} 
+"%-(#$)/��"%-(#$)0*"(#$)"%%(#$)     (3.5) 

This is the third order method was referred by Chun and 

Kim [6, 14]. Its efficiency is 1.44225. 

Algorithm (3.6): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 

,� = 
� − +"(#$)
'"%(#$)                                                 (3.6.a) 

1� = 
� − &"(#$)
"(#$)
"%(#$)                      (3.6.b) 


��� = 1� − +"(2$)"%(2$)
+"%-(2$)*"(2$)"%%(2$)           (3.6.c) 

Where &"(#$) = '"%(($)�"%(#$)
 )"%(($)*+"%(#$). This is known as Jarratt-

Haley's method [2], which has twelfth-order of convergence. 

Its efficiency is 1.513086. 

Now, we present the following new two predictor-

corrector iterative methods which have twelfth-order 

convergence, based on a combination scheme between 

Jarratt's method and each one of Householder's method and 

Chun&Kim's method, by using Algorithm (3.2) as a predictor 

and Algorithm (3.4) and Algorithm (3.5) as a corrector, for 

solving the nonlinear equation f(x)=0. 

Algorithm (3.7): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 

,� = 
� − +"(#$)
'"%(#$)                          (3.7.a) 

1� = 
� − { '"%(($)�"%(#$)
 )"%(($)*+"%(#$)}

"(#$)
"%(#$)             (3.7.b) 


��� = 1� − "(2$)
"%(2$) { 1 +  "(2$)"%%(2$)

+"%-(2$)  }                 (3.7.c) 

This is called the predictor-corrector Jarratt-Householder's 

method (JHHM), which has twelfth-order of convergence. Its 

efficiency is 1.513086. 

Algorithm (3.8): For a given x0, compute approximates 

solution xn+1 by the iterative scheme: 

,� = 
� − +"(#$)
'"%(#$)                               (3.8.a) 

1� = 
� − { '"%(($)�"%(#$)
 )"%(($)*+"%(#$)}

"(#$)
"%(#$)                 (3.8.b) 


��� = 1� − "(2$)"%(2$){+�+"%-(2$)�"(2$)"%%(2$)} 
+"%-(2$)/��"%-(2$)0*"(2$)"%%(2$)    (3.8.c) 

This is called the predictor-corrector Jarratt-Chun&Kim's 

method (JCKM), which has twelfth-order of convergence. Its 

efficiency is 1.513086. 

4. Convergence Analysis of the Methods 

In this section, we compute the orders of convergence and 

corresponding error equations of the proposed methods 

(Algorithm (3.7) and Algorithm (3.8)) as follow. 

Theorem 4.1: Let α ∈ 3  be a simple zero of sufficiently 

differentiable function f: I ⊆ R → R for an open interval I. If 

x0 is sufficiently close to α, then the iterative method defined 

by Algorithm (3.7) is of order twelve and it satisfies the 

following error equation: 

� 7 +1= (c3
4
c2

3
- 5c3

3
c2

5
+ 9c3

2
c2

7
- (1/729)c3c4

3
- 7c3c2

9
+ (2/729)c4

3
c2

2
+ (2/27)c4

2
c2

5
+(2/3)c4c2

8
+ 2c2

11
- (1/9)c3c4

2
c2

3
-(5/3)c3c4c2

6
 

+ (1/27)c4
2
c2c3

2
- (1/3)c4c3

3
c2

2
+ (4/3)c4c3

2
c2

4
)e

12
+ O(e

13
)                                 (4.1) 
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Where 89 �
  :(9)

(;)
:%(<) , k=2, 3, …, and 

�� = 
� − �                                                                          (4.2) 

Proof: Let α be a simple zero of f. Then by expanding =(
�) and =′(
�) in Taylor’s series about x = α, we get 

f(xn) ==′(�){e+ c2e
2
 + c3e

3
+ c4e

4
+ c5e

5
+…}                                                            (4.3) 

=′(
�)= =′(�){1+ 2c2e+ 3c3e
2
+ 4c4e

3
+ 5c5e

4
+6c6e

5
+…}                                         (4.4) 

From (4.3) and (4.4), we have 

"(#$)
"?(#$)= e- c2e

2
+ (-2c3+2c2

2
)e

3
+ (7c2c3-3c4-4c2

3
)e

4
+ (10c2c4-4c5+6c3

2
-20c3c2

2
+8c2

4
)e

5
+                            (4.5) 

Also, 

+"(#$)
 '"?(#$)= (2/3)e- (2/3)c2e

2
+ (-(4/3)c3+ (4/3)c2

2
)e

3
+ ((14/3)c2c3-2c4- (8/3)c2

3
)e

4
+ ((20/3)c2c4- (8/3)c5 

+ 4c3
2
- (40/3)c3c2

2
+ (16/3)c2

4
)e

5
+…                                                            (4.6) 

Substituting (4.6) and (4.2) into (3.7.a), and simplifying, we have 

,�=α+(1/3)e+ (2/3)c2e
2
+ ((4/3)c3- (4/3)c2

2
)e

3
+ (-(14/3)c2c3+ 2c4+ (8/3)c2

3
)e

4
+ (-(20/3)c2c4 

+ (8/3)c5-4c3
2
+ (40/3)c3c2

2
- (16/3)c2

4
)e

5
+…                                                               (4.7) 

From (4.7), using Taylor's expansion and simplifying, we have 

=′(,�)= =′(�){1+ (2/3)c2e+ ((4/3)c2
2
+ (1/3)c3)e

2
+ (4c2c3+ (4/27)c4 -(8/3)c2

3
)e

3
+ ((44/9)c2c4- 32/3)c3c2

2 

+ (8/3)c3
2
+ (16/3)c2

4
)e

4
+ ((52/9)c4c3- (40/3)c4c2

2
+ (16/3)c2c5- 12c2c3

2
+ (80/3)c3c2

3
- (32/3)c2

5
)e

5
 +… }        (4.8) 

Combining (4.8) and (4.4), using Taylor's expansion and simplifying, we have 

3=′(,�) + 2=′(
�)= 4+ 4c2e+ (4c2
2
+4c3)e

2
+ ((40/9)c4+ 12c2c38c2

3
)e

3
 + (5c5+ (44/3)c2c4-32c3c2

2
8c3

2
+ 16c2

4
)e

4 

+ ((52/3)c4c3- 40c4c2
2
+ 16c2c5- 36c2c3

2
+ 80c3c2

3
- 32c2

5
+ 6c6)e

5
+ …                                    (4.9) 

Also, 

6=?(,�) − 2=′(
�)= 4+ (8c2
2
-4c3)e

2
+ (-(64/9)c4+ 24c2c3- 16c2

3
)e

3
+ (-10c5+(88/3)c2c4- 64c3c2

2
+ 16c3

2
+ 32c2

4
)e

4
 

+ ((104/3)c4c3- 80c4c2
2
+ 32c2c5- 72c2c3

2
+ 160c3c2

3
-64c2

5
-12c6)e

5
+ …                                       (4.10) 

Dividing (4.9) by (4.10), using Taylor's expansion and simplifying, we have 

'"?(($)�+"?(#$)
)"%(C$)*+"?(#$)= 1+ c2e+ (-c2

2
+2c3)e

2
+ ( (26/9)c4- 2c2c3)e

3
+ (- (17/9)c2c4- 3c3c2

2
+ 2c2

4
+ (15/4)c5)e

4
 

+ (-(3/2)c2c5- (44/9)c4c2
2
+14c3c2

3
- 9c2c3

2
- 4c2

5
+ (19/9)c4c3+ (9/2)c6)e

5
+…                         (4.11) 

Combining (4.5) and (4.11), using Taylor's expansion and simplifying, we have 

/'"%(($)�+"%(#$)
)"%(($)*+"%(#$)0

"(#$)
"?(#$)= e+ (c2c3-c2

3
- (1/9) c4) e

4
+ ((20/9) c2c4- (1/4)c5+ 2c3

2
- 8c3c2

2
+ 4c2

4
)e

5
 +…                   (4.12) 

Substituting (4.12) and (4.2) into (3.7.b), and simplifying, we have 

zn= α+ (-c2c3+c2
3
+ (1/9) c4) e

4
+ (-(20/9) c2c4+ (1/4) c5-2c3

2
+8c3c2

2
-4c2

4
) e

5
+ …                                  (4.13) 

From (4.13), using Taylor's expansion and simplifying, we have 

=(1�)= =′(�){(-c2c3+ c2
3
+ (1/9) c4) e

4
+ (-(20/9)c2c4+ (1/4) c5-2c3

2
+ 8c3c2

2
- 4c2

4
)e

5
+ …}                     (4.14) 

And, 

=′(1�)= =′(�){1+ (-2c2
2
c3+2c2

4
+ (2/9) c2c4) e

4
- ((40/9) c2

2
c4-(1/2) c2c5+ 4c2c3

2
- 288c3c2

3
+ 144c2

5
) e

5
+ …}         (4.15) 
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Also, 

=′′�1��= =′���{2c2+ (-6c2c3
2
+6c3c2

3
+ (2/3) c3c4) e

4
- ((40/3) c2c3 c4-(3/2) c3c5+12c3

3
-48c3

2
c2

2
+ 24c3c2

4
) e

5
+ …}      (4.16) 

From (4.14), (4.15) and (4.16), using Taylor's expansion and simplifying, we have 

"�2$�

"?�2$�
 = (-c2c3+ c2

3
+(1/9) c4) e

4
+ (-(20/9) c2c4+ (1/4) c5- 2c3

2
+ 8c3c2

2
- 4c2

4
) e

5
+ …                                (4.17) 

And, 

1+ 
 "(2$) "??(2$)

+D"%(2$)E- = 1+ (-c2
2
c3+c2

4
+(1/9) c2c4) e

4
- ((20/9) c2

2
c4- (1/4) c2c5+ 2c2c3

2
- 8c3c2

3
+ 4c2

5
) e

5
+ …                  (4.18) 

Combining (4.17) and (4.18), using Taylor's expansion and simplifying, we have 

"(2$)
"?(2$) {1 +  "(2$) "??(2$)

+D"%(2$)E-  }= (-c2c3+c2
3
+ (1/9) c4) e

4
+ (-(20/9) c2c4+ (1/4) c5- 2c3

2
+ 8c3c2

2
- 4c2

4
) e

5
+ …                (4.19) 

Thus, substituting (4.13) and (4.19) into (3.7.c), using Taylor's expansion and simplifying, we have 

xn+1 = �+ (c3
4
c2

3
- 5c3

3
c2

5
+ 9c3

2
c2

7
- (1/729)c3c4

3
- 7c3c2

9
+ (2/729)c4

3
c2

2
+ (2/27)c4

2
c2

5
+ (2/3)c4c2

8
 +2c2

11
 

-(1/9)c3c4
2
c2

3
- (5/3)c3c4c2

6
+ (1/27)c4

2
c2c3

2
- (1/3)c4c3

3
c2

2
+ (4/3)c4c3

2
c2

4
)e

12
+ O(e

13
)                    (4.20) 

Which implies that 

en+1 = (c3
4
c2

3
- 5c3

3
c2

5
+ 9c3

2
c2

7
- (1/729)c3c4

3
- 7c3c2

9
+ (2/729)c4

3
c2

2
+ (2/27)c4

2
c2

5
+ (2/3)c4c2

8
+ 2c2

11
 

- (1/9)c3c4
2
c2

3
- (5/3)c3c4c2

6
+ (1/27)c4

2
c2c3

2
- (1/3)c4c3

3
c2

2
+ (4/3)c4c3

2
c2

4
)e

12
+ O(e

13
)                                         (4.21) 

This is show that Algorithm (3.7) is twelve-order convergent. 

Theorem 4.2: Let α ∈ I be a simple zero of sufficiently differentiable function f: I ⊆ R → R for an open interval I. If x0 is 

sufficiently close to α, then the iterative method defined by Algorithm (3.8) is of order twelve and it satisfies the following 

error equation: 

en+1= (c3
4
c2

3
- (9/2)c3

3
c2

5
+ (15/2)c3

2
c2

7
- (1/729)c3c4

3
- (11/2)c3c2

9
+ (1/486)c4

3
c2

2
+ (1/18)c4

2
c2

5
+ (1/2)c4c2

8
 

+ (3/2)c2
11

+ (1/27)c4
2
c2c3

2
- (1/3)c4c3

3
c2

2
+ (7/6)c4c3

2
c2

4
-(5/54)c3c4

2
c2

3
- (4/3)c3c4c2

6
)e

12
+ O(e

13
)                        (4.22) 

Proof. Similar procedure, to the proof of theorem 4.1, can 

be applied to analyze the convergence of Algorithm (3.8). 

5. Numerical Examples 

In this section, we present the results of numerical 

calculations on different functions and initial points to 

demonstrate the efficiency of proposed methods, Jarratt- 

Householder's method (JHHM) and Jarratt- Chun&Kim's 

method (JCKM). Also, we compare these methods with the 

classical Newton’s method (NM) and other methods, as 

Jarratt's method (JM), Halley's method (HM), Householder's 

method (HHM), Chun&Kim's method (CKM), and Jarratt-

Halley's method (JHM). All computations are carried out 

with double arithmetic precision. We use the stopping criteria 

|xn+1 − xn| < ϵ and |f (xn+1)|< ϵ, where ϵ = 10
−15

, for computer 

programs. All programs are written in MATLAB. 

Different test functions and their approximate zeros x
*
 

found up to the 15
th

 decimal place are given in Table 1, the 

efficiency index (E.I.) of various iterative methods is given in 

Table 2 and the number of iterations (NITER) to find x
*
 is 

given in Table 3. NC in Table 3 means that the method does 

not converge to the root x
*
. 

Table 1. Different test functions and their approximate zeros (x*). 

Functions x* 

f1(x)= x3+4x2-1 1.365230013414097 

f2(x)= sin(x)-x/2 1.895494267033981 

f3(x)= e-x+ cos(x) 1.746139530408012 

f4(x)=exsin(x)+ ln(x2+1) 0 

f5(x)= (x-2)23- 1 3 

f6(x)= x �#-
– sin2(x)+ 3cos(x)+5 -1.207647827130919 

f7(x)= sin-1(x2-1)- x/2+1 0.5948109683983692 



 American Journal of Applied Mathematics 2016; 4(4): 175-180 179 

 

Table 2. Comparisons between the methods depending on the efficiency index (E.I.). 

 NM JM HM HHM JHM JHHM JCKM 

p 2 4 3 3 12 12 12 

m 2 3 3 3 6 6 6 

E.I.= p1/m 1.414214 1.587401 1.442250 1.442250 1.513086 1.513086 1.513086 

Table 3. Comparisons between the methods depending on the number of iterations (NITER). 

Functions Initial points x0 
Number of Iterations(NITER) 

NM JM HM CKM HHM JHM JCKM JHHM 

f1(x) 

-0.3 54 39 52 7 10 14 6 11 

-0.01 29 26 39 6 27 11 9 8 

0.8 6 3 4 4 5 2 2 2 

f2(x) 

-1 14 4 6 6 NC 3 3 3 

1.6 6 3 3 3 4 2 2 2 

6 17 16 11 8 4 5 4 3 

f3(x) 

-0.3 5 3 8 8 8 2 3 2 

2 4 2 6 7 NC 2 2 2 

3 7 4 23 15 NC 3 3 3 

f4(x) 

-0.1 5 3 3 3 5 2 2 2 

2.3 9 5 7 7 6 3 3 3 

3.5 6 4 4 4 4 3 3 3 

f5(x) 

0.2 713 66 48 52 53 83 28 19 

2.9 12 5 4 NC NC 3 3 3 

5 30 13 NC 16 16 77 8 8 

f6(x) 

-1.2 4 3 3 3 3 2 2 2 

1.2 623 9 14 5 5 NC 8 8 

-3 15 7 8 NC 10 5 5 5 

f7(x) 

-0.9 4 3 3 3 3 2 2 2 

0.85 4 2 3 3 3 2 2 2 

1 5 3 3 3 3 2 2 2 

 

6. Conclusion 

In this paper, we presented new two predictor-corrector 

iterative methods with twelfth-order convergence for solving 

nonlinear equations, which are based on the Jarratt's method, 

Householder's method and Chun & Kim's method. The 

proposed methods have the same efficiency index is equal to 

1.513086. From numerical experiments we show that our 

methods are efficient, robust and faster convergence in 

comparison with classical Newton's method and some other 

methods. 
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