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Abstract: Human African trypanosomiasis (HAT) generally known as sleeping sickness is a fatal parasitic disease which 

appears mostly in sub-Saharan Africa, threatening millions of people and animals. Sleep disorders are a major feature of the 

(most) advanced stage of the disease, when the central nervous system is affected. In the absence of treatment, the outcome is 

always fatal. The parasite is transmitted to humans or animals through the bite of a tsetse fly previously infected by humans or 

animals carrying the parasite. We look for different scenarios to control the epidemic by integrating in our model terms that 

model the different control techniques. 
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Optimal Control 

 

1. Introduction 

Recently, a number of studies were carried out to explore 

the optimal control theory in some mathematical models for 

infectious diseases including the HIV virus [45, 46], 

tuberculosis [48] and vector-borne diseases [47]. Authors in 

[47] derive the optimal control efforts for treatment and 

prevention in order to prevent the spread of a vector-borne 

disease using a system of ordinary differential equations 

(ODEs) for the host and vector populations. Authors in [9] 

investigated such optimal strategies for prevention, treatment 

and vector control using two systems of ODEs which consist 

of a stage-structured model for the vector and a SI/SIR-type 

model for the vector/host population. In this paper, using 

models described in [39] for the tsetse fly population 

dynamics and the transmission virus, we formulate the 

associated control model in order to derive an optimal 

prevention and treatment strategies with minimal 

implementation costs. Controls used here are based on five 

main actions applied in the epidemics. There are optimal 

strategies for prevention, treatment and vector control for 

humans and cattle using two systems of ODEs which consist 

of a stage-structured model for the vector and a SEI/SEIRS-

type model for the vector/host populations (human and 

cattle). 

The paper is organized as follows. In section 2, we present 

the compartmental models used in [39] to describe the tsetse 

fly population dynamics and HAT transmission between 

tsetse flies, humans and cattle. In section 3, we formulate an 

optimal control problem; first, we investigate the existence of 

an optimal control, then we derive the optimality system 

which characterizes the optimal control using Pontryagin’s 

Maximum Principle [49]. In section 4 numerical results 

illustrate our theoretical results. 

2. The Basic Model 

2.1. Modeling the Growth Dynamics of the Tsetse Fly 

We first model the growth dynamics of the tsetse fly. From 

the life cycle of the tsetse fly, it is sufficient to consider two 

life stages, namely the pupae and the adult flies. 

Let L (t) be the number of pupae at time t and A (t) be the 

number of (male and female) adult flies at time t. The 

dynamics of L and A is modeled by the following system 
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���� = ���� �1 − ���
 − (�� + ��)�                 (1) 

���� = ��� − ���                                (2) 

Here, ��  is the rate at which female flies give birth to 

larvae; W is the proportion of female flies in the population 

of adult flies; ��  is the pupae carrying the capacity of the 

nesting site; �� is the transfer rate from pupae to adult tsetse 

flies, so 
��� is the average time as a pupa; dL and dF are the 

mortality rate of pupae and adult flies, respectively; with all 

parameters assumed positive. 

2.1.1. Equilibrium Points 

The threshold defined by 

� = �������
�����                                 (3) 

is important when calculating the equilibrium points of 

system (1)–(2), as shown in the following result. Parameter r 

can be interpreted as the probability of surviving the pupal 

stage multiplied by the birthrate divided by the death rate. If r 

<1, the population of tsetse flies will be extinguished, 

otherwise they evolve toward an equilibrium given by 

��∗�∗ = �1 − �!
 " ��#�$���%                          (4) 

Details as regards the stability of this model are given in 

[39]. 

2.1.2. Formulation of the Full Model 

For our full model, we assume that r >1 and that the flies 

are in equilibrium (�∗, �∗).  Trypanosomiasis in the fly 

population is modeled by an SEI compartmental model. It is 

assumed that a fly once infected will never recover or be 

removed. So we subdivide the adult fly population into three 

compartments, SF susceptible tsetse flies, EF exposed tsetse 

flies infected but not yet infectious, and IF infectious tsetse 

flies that are able to transmit the disease once they bite a 

susceptible host. Thus the total adult fly population is 

�∗ = SF + EF + IF                                (5) 

The human and cattle host populations are described by a 

Malthus model. We denote by NH and NC the total size of the 

human and cattle host populations, respectively, at time t and 

bH, bC, dH, dC are the rates of birth and mortality of the 

human and cattle host populations, respectively. The 

dynamics of NH and NC  is governed by 

�)*�� = (�+ − �+),+ = -+,+                    (6) 

�).�� = (�/ − �/),/ = -/,/                      (7) 

Where αH = bH − dH and αC = bC − dC are the growth rates 

of the human and cattle population respectively. If αH<0 

(αC<0), the human (cattle) population will be extinguished, it 

will remain constant if αH=0 (αC=0), and will grow 

exponentially if αH>0 (αC>0). We assume that αH=0 (αC=0), 

i.e. bH=dH (bC=dC), so that the human (cattle) population is 

constant over the period of the study and that there is no 

human and cattle death due to HAT. Trypanosomiasis in the 

human and cattle host populations is modeled by SEIRS 

compartmental models, each with four compartments: 

� susceptible hosts SH (SC): humans (cattle) at risk and 

disease free; 

� Exposed hosts EH (EC): humans (cattle) in the latent 

stage of the disease. they are infected but unable to 

transmit the disease; 

� Infectious hosts IH (IC), humans (cattle) able to transmit 

the disease to tsetse flies if they are bitten. These 

compartments contain hosts in the first stage of the 

disease with only minor symptoms or not aware if they 

are infected;  

� Removed hosts RH (RC) consist of humans (cattle) in the 

second stage of the disease, very sick and not exposed to 

flies, so that they do not pass on infection, as well as 

humans (cattle) undergoing treatment and not exposed to 

flies. We assume that treatment starts at the beginning of 

stage 2, since this is usually when hosts become 

symptomatic. These compartments also contain removed 

humans (cattle) that have developed temporary 

immunity after recovery from stage 2 or treatment and 

they can neither transmit nor acquire HAT, but they will 

become susceptible again after the period of temporary 

immunity has passed. 

The constant total human and cattle populations are 

defined by: 

,+ =  0+ + 1+ + 2+ + 3+                       (8) 

,/ =  0/ + 1/ + 2/ + 3/                        (9) 

The dynamics of T. b. Gambiense in the tsetse fly 

population, assuming that transmission to flies occurs from 

humans and cattle in only the first stage of HAT, is given by 

the system 

�4��� = ���∗ − ��0� − (1 − 5)67 8*)* 0� − 569 8.). 0�   (10) 

�:��� = (1 − 5)67 8*)* 0� + 569 8.). 0� − (;� + ��)1�    (11) 

�8��� = ;�1� − ��2�                           (12) 

Here a is the vector blood feeding rate, 7 is the probability 

that a fly becomes infected after biting an infectious human, 

v is the probability that a fly becomes infected after biting 

infectious cattle, 
� <� is the incubation period in the fly, �� is 

the natural mortality rate of adult flies and 5 is the proportion 

of tsetse fly bites on cattle (thus (1−p) is the proportion of 

bites on humans). This proportion is assumed to be constant 

as in Funk et al. [40]. For a discussion of this assumption see 

Rock et al. [10, Section 3.3]. 

The dynamics of T. b. gambiense in the human host 

population is governed by the system 
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@�0+�A = �+,+ + B+3+ − (1 
 5�6� 2�,+ 0+ 
 �+0+

�1+�A � �1 
 5�6� 2�,+ 0+ 
 �;+ � �+�1+ 
�2+�A � ;+1+ 
 �C+ � �+�2+
�3+�A � C+2+ 
 ��+ � B+�3+

 

Where � is the probability that an infectious fly infects a 

human host, �+ is the birth rate of the human population, 

�+ � �+ is the human mortality rate, 
�

<*  is the average 

incubation period for a human host, 
�

D* is the average length 

of stage 1 for humans corresponding to the infectious period. 

For untreated humans, 
�

E* is the sum of the average length of 

stage 2 and the average temporary immunity period. For 

treated humans, 
�

E*  is the sum of the average length of 

treatment and the average temporary immunity period. Note 

that we assume that the average length of treatment is equal 

to the average length of stage 2. Similarly, the dynamics of T. 

b. Gambiense in the cattle host population is governed by the 

system 

�0/�A � �/,/ � B/3/ 
 56F 2�,/ 0/ 
 �/0/ 
�1/�A � 56F 2�,/ 0/ 
 �;/ � �/�1/ 

�2/�A � ;/1/ 
 �C/ � �/�2/
�3/�A � C/2/ 
 ��/ � B/�3/

 

where u is the probability that an infectious fly infects a 

cattle host, �/  is the birth rate of the cattle population, �/= 

�/ is the cattle mortality rate, 
�

<.  is the average incubation 

period for cattle, 
�

<. is the average length of stage 1 for cattle 

corresponding to the infectious period. For the untreated 

cattle, 
�

E. is the sum of the average length of stage 2 and the 

average temporary immunity period. For the cattle treated, 
�

E. 

is the sum of the average length of treatment and the average 

temporary immunity period. As for humans, we assume that 

the average length of treatment is equal to the average length 

of stage 2 for cattle. 

Thus, the dynamics of the transmission of sleeping 

sickness is then described by the system of equations below, 

where we have assumed that there is no death due to the 

disease, no vertical transmission, and all parameters are 

positive, except B+and B/ which are non negative. 

�:�
�� � �1 
 5�67 8*

)* 0� � 569 8.
). 0� 
 ;G�1�       (13) 

�8�
�� � ;�1� 
 ��2�                              (14) 

�:*
�� � 56F 8�

). 0/ 
 ;G+1+                     (15) 

�8*
�� � ;+1+ 
 ;G+2+                               (16) 

�:.
�� � 56F 8�

). 0/ 
 ;G/1/                         (17) 

�8.
�� � ;/1/ 
 CG/2/                                 (18) 

�4�
�� � ���� 
 ��0� 
 �1 
 5�67 8*

)* 0� 
 569 8.
). 0�  (19) 

�4*
�� � �+,+ � B+3+ 
 �1 
 5�6� 8�

)* 0+ 
 �+0+     (20) 

�4.
�� � �/,/ � B/3/ 
 56F 8�

). 0/ 
 �/0/           (21) 

�H*
�� � C+2+ 
 ��+ � B+�3+                 (22) 

�H.
�� � C/2/ 
 ��/ � B/�3/                   (23) 

Where  CIJ � CJ � �J;  ;GJ � ;J � �J for i ∈ {H, C} and ;G� � ;� � ��  
Figure 1 shows a flow diagram for this system and Table 1 

describes the model parameters. Note that all cross 

transmission terms are normalized with respect to the host 

population as it is common in vector-borne disease models 

[19, Section 14.3]. Non negative initial conditions with 1� � 2� � 1+ � 2+ � 1/ � 2�  positive and small complete 

the formulation of our HAT model in the invariant region 

L � M�1� , 2� , 1+ , 2+ , 1/ , 2/ , 0� , 0+ , 3+ , 0/ , 3/�  N
 O��� P " :��8��4�Q��

:*�8*�4*�H*Q)*:.�8.�4.�H.Q).
%R                (24) 

 

Figure 1. Flow diagram of HAT transmission dynamics. 

2.2. Model Equilibrium and Stability 

In [39] A. M. Ndondo et al. showed that system (13)–(23) 

always reaches the disease free equilibrium (DFE), XT� ��0, 0, 0, 0,0, 0,0, A�, NX, NY, 0, 0� . Considering the local 
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stability of  XT∗ , they followed the notation of [7] and only 

considered the infected compartments given by (13)−(18) 

and the calculation of the basic reproduction number gave 

ℛT = [(1 − 5)\6\ � 7 ;�  ;+ �∗;]�  ��  ;I+ C]+ ,+ + 5\6\ F 9 ;� ;/�∗;]�  �� ;]/  CI/  ,/  

3. Optimal Control 

In this section, we discuss the control measures to limit the 

impact of the tsetse fly in the transmission of HAT. We 

consider model (13)–(23) with different control measures: 

� The first control measure noted ^�  models efforts to 

prevent the spread of infection. It brings together the 

various strategies used in order to reduce the number of 

vector-human contacts. We can cite in particular the 

use of repellents, mosquito nets (since the tsetse flies 

are mostly active in the late afternoon and early 

morning) or suggest that humans wear long-sleeved  

clothing to cover the exposed parts of the body, and 

prevent cattle from being bitten by dipping them in fly 

repellent solutions. Moreover, control µ1 also takes 

into account the municipality efforts to raise awareness 

of the danger of the tsetse fly and HAT in the 

population. Our action is limited in the interval [0, T]. 

� The second control measure ^\  is the treatment of 

human patients on the interval [0, T]. It also models the 

isolation of patients in treatment places (hospitals and 

isolation areas) to avoid all possible new contamination 

cases. 

� The third control measure  μ` specifically models the 

vector control on the interval [0, T]. It includes actions 

under the responsibility of vector control services and 

is intended to kill the pupae through the use of 

larvicides whose action is specifically directed against 

the pupae. It also includes the community effort to 

destroy potential breeding sites around homes and 

deprive the tsetse flies of the breeding sites in which 

their larvae can develop (in hot weather, at midday, 

tsetse hide in shelters to avoid high temperatures). 

Houses and huts also provide a fresh environment and 

many tsetse flies find refuge there in the dry season. 

Tsetse flies normally leave their refuge in the late 

afternoon to find blood meal [15], thus to avoid being 

bitten or to prevent tsetse flies from entering or 

facilitating their exit from habitations. The control 

measure μ`  can also model the efforts to trap tsetse 

flies, reducing the larvae capacity Kb. There is also the 

idea of introducing a sterile population of flies to 

reduce the number of clutches (since the females are in 

general fertilized only once). 

� The fourth control noted  ^c  models efforts to 

prevent the spread of infection. It brings together the 

various strategies used in order to reduce the number 

of cattle-vector contacts. It brings together the 

different strategies used in order to reduce the 

number of contacts between vectors and cattle on the 

interval [0, T]. 

� The fifth control noted ^d measures the treatment of 

infected cattle on the interval [0, T]. It also models the 

isolation of infected cattle in treatment places (isolated  

areas) to avoid all possible new contamination cases. 

We will consider a situation where:   ℛT = [(1 − 5)\6\ � 7 ;�  ;+  �∗;]�  ��  ;I+ C]+ ,+ + 5\6\ F 9 ;� ;/�∗;]�  �� ;]/  CI/  ,/  

is greater than 1, and we are not at a stable disease free 

equilibrium??, and there is need to apply a treatment to 

control the epidemic. Under these conditions, the optimal 

control problem is formulated as follows: 

���� = ���� �1 − ���
 − (�� + �� + �/^`)�        (25) 

���� = ��� − ���                            (26) 

�:��� = (1 − ^�)(1 − 5)67 8*)* 0� + (1 − ^c)569 8.). 0� −(;G�+��^`)1�                                                 (27) 

�8��� = ;�1� − (�� + ��^`)2�                  (28) 

�:*�� = (1 − ^�)(1 − 5)6� 8�)* 0+ − (;G++^\C+)1+     (29) 

�8*�� = ;+1+ − (CG++^\C+)2+                  (30) 

�:.�� = (1 − ^c)56F 8�). 0/ − (;G/+C/^d)1/        (31) 

�8.�� = ;/1/ − (CG/ + C/^d)2/                  (32) 

�4��� = ���∗ − (�� + ��^`)0� − (1 − ^�)(1 − 5)67 8*)* 0� −(1 − ^c)569 8.). 0�                                                  (33) 

�4*�� = �+,+ + B+3+ − (1 − ^�)(1 − 5)6� 8�)* 0+ − �+0+  (34) 

�4.�� = �/,/ + B/3/ − (1 − ^c)56F 8�). 0/ − �/0/    (35) 

�H*�� = C+2+ − (�+ + B+)3+                  (36) 

�H.�� = C/2/ − (�/ + B/)3/                   (37) 

Where ^� ∈ [0, 1] corresponds to prevention. So if ^�= 1, then 

the number of human-vector contacts is zero and if ^� = 0, 

the infection rate is maximum and equal to 6� or 67; ^\  ∈ [0, 1] corresponds to the treatment  C+ is the proportion of actual treatment (so ^\C+ gives the 

proportion of humans cured with treatment) ^`  ∈ [0, 1] corresponds to the vector control. ��^` is the 

mortality rate of tsetse flies due to the use of chemicals or 

destruction of breeding sites. ^c ∈ [0, 1] corresponds to prevention. So if ^c = 1, then 

the number of cattle-vector contacts is zero and if ^c = 0, the 

infection rate is maximum and equal to 69 or 6F; ^d  ∈ [0, 1]  corresponds to the cattle treatment and C/ is 
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the proportion of actual treatment (so C/^d  gives the 

proportion of cattle cured with treatment); 

Proposition 3 D × Γ is positively invariant for system (17-

29) 

Proof 

First we have: 

Using Grönwall’s inequality, we deduce easily that while 

all variables in this system are positive, we have moreover 

���A ≤ ���� f1 − ���g − (�� + ��)� 
���A ≤ ��� − ��� �1��A ≤ (1 − 5)67 2+,+ 0� + 569 2/,/ 0� − ;G�1�  

�2��A ≤ ;�1� − ��2�  �1+�A ≤ 56F 2�,/ 0/ − ;G+1+ 
�2+�A ≤ ;+1+ − ;G+2+ �1/�A ≤ 56F 2�,/ 0/ − ;G/1/  
�2/�A ≤ ;/1/ − CG/2/  �0��A ≤ ���∗ − ��0� − (1 − 5)67 2+,+ 0� − 569 2/,/ 0��0+�A ≤ �+,+ + B+3+ − (1 − 5)6� 2�,+ 0+ − �+0+�0/�A ≤ �/,/ + B/3/ − 56F 2�,/ 0/ − �/0/�3+�A ≤ C+2+ − (�+ + B+)3+ �3/�A ≤ C/2/ − (�/ + B/)3/

 

The right side of these inequalities is exactly the HAT 

transmission model (13-23) without control. Since the 

solutions of system (13-23) were defined in D × Γ. So, as 

done before, using Grönwall’s inequality, we deduce that the 

solutions of the last system are bounded. 

We associate to system (27-37), the optimal control 

problem coupled with the following cost function: 

h(^�, ^\, ^`, ^c, ^d) = i ���2+ + �\2� + �`2/ + �\ j�^�\ +kT�\ j\^\\ + �\ j`^\̀ + �\ jc^c\ + �\ jd^d\
 �A       (38) 

The first terms represent the costs for populations 2+ , 2/  

and 2�  that we want to reduce. The constants j�, j\, j`, jc 

and jd  are positive and correspond to the ratio used to 

regulate the control for the prevention, treatment and vector 

control in human and cattle population respectively. As given 

in the literature, the cost functions are assumed to be 

quadratic functions. In fact, a quadratic cost function is a 

natural way that allows the analogy with the expended energy 

for all those dimensions. 

The objective is to limit the spread of the disease by 

reducing the number of flies and infected humans. We then 

look for the control terms (^�∗,  ^\∗ , ^∗̀ , ^c∗ , ^d∗) that minimize 

the cost:   h(^�∗,  ^\∗ , ^∗̀ , ^c∗ , ^d∗) = mino h(^�, ^\, ^`, ^c, ^d)|(^�, ^\, ^`, ^c, ^d)  ∈  qr 
where q =  (^�∗,  ^\∗ , ^∗̀ , ^c∗ , ^d∗), 6J ≤ ^� ≤ �J ,   s ∈ o1, 2, 3, 4, 5r 

with  ^J  a piecewise continuous function on [0, T]  

and i = 1, 2, 3, 4, 5 

The aim is not only to reduce the populations of infected 

humans and infected vectors 2+ , 2/and 2� after a time T but 

also over [0, T] to act simultaneously on prevention (contact 

vectors-infected humans/cattle), treatment (infected 

humans/cattle), 2+ , 2/  and the vector control. The First, 

second and third terms of the functional J model the human 

population, the cattle population and the accumulated 

infected vectors from the initial time T0 = 0 to the final time xy = T. 

The fourth, fifth, sixth, seventh and eighth terms model the 

cumulative costs of prevention, treatment and vector control. 

All of them vary according to time. 

The choice of positive parameters A1, A2, A3, B1, B2, B3, B4 

and B5 depends on a subjective assessment of the relative 

importance given by the technical staff to reduce the 

population of infected human, infected cattle, infected flies 

by prevention, treatment of infected humans and cattle, and 

vector control (the weight or weighting for regulating the 

control). Λ is the set of controls and 6J , �J  are constants 

belonging to [0, 1], i = 1, 2, 3, 4, 5 

The optimal control problem is solved when we determine 

( ^�∗,  ^\∗ , ^∗̀ , ^c∗ , ^d∗)  ∈ Λ that minimizes the function (38). 

Hence our work will consist of the following steps: 

� to show the existence of an optimal control; 

� to give a characterization of the optimal control; 

� to obtain numerical representations 

3.1. Existence of the Optimal Control 

Proposition 3.1 Consider the control problem associated 

with problem (25-37). There is a control (^�∗,  ^\∗ , ^∗̀ , ^c∗ , ^d∗) 

and a corresponding solution ( �∗, �∗, 1�∗ , 2�∗ , 1+∗ , 2+∗ , 1/∗ , 2/∗ , 0�∗, 0+∗ , 3+∗ , 0/∗, 3/∗ ) 

which minimizes J (µ1, µ2, µ3, µ4, µ5) on Λ such that 

min(z{,z|,z},z~,z�)∈ � h(^�, ^\, ^`, ^c, ^d) =  h(^�∗,  ^\∗ , ^∗̀ , ^c∗ , ^d∗) 

Proof 

According to W. H. Fleming [1], Theorem 3.4.1, we need 

to check the following conditions: 

1. The set of controls and corresponding solutions is not 

empty; 

2. The set of controls of Λ is convex and closed in L
2
 (0, T); 

3. The vector set of the state system is bounded by a 

linear function of control; 

4. the integrand of the objective function is convex; 

5. there exist constants 7�, 7\ and β > 0 such that the 

objective function integrand is bounded by 7�(|^�|\ +|^\|\ + |^`|\ + |^c|\ + |^d|\)��\ − 7\ 
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We check that µ1 = µ2 = µ3 = µ4 = µ5 = 0 is a control in Λ 

and ( �∗, �∗, 1�∗ , 2�∗ , 1+∗ , 2+∗ , 1/∗ , 2/∗ , 0�∗, 0+∗ , 3+∗ , 0/∗, 3/∗ ) is a 

solution corresponding to control µ1 = µ2 = µ3 = µ4 = µ5 = 0, 

so the set of all controls and corresponding solutions is not 

empty, which satisfies condition 1. 

� The set Λ is bounded by definition, so condition 2 is 

satisfied. 

� The system vector field (25-37) satisfies condition 3 

because it is bounded. 

� there exist c1, c2 >0 and β>1 satisfying 

��2+(A) + �\2�(A) + �`2/(A) + 12 j�^�\(A) + 12 j\^\\(A) + 12 j`^\̀(A) + 12 jc^c\(A) + 12 jd^d\(A)                         
≥ 7�(|^�|\ + |^\|\ + |^`|\ + |^c|\ + |^d|\)�|  ��| 

Since variables 2+ , 2/ , 2�  are bounded, we deduce then the 

existence of an optimal control (^�∗ ,  ^\∗ , ^∗̀ , ^c∗ , ^d∗) which 

minimizes the cost function J (µ1, µ2, µ3, µ4, µ5). 

In summary, for this minimization problem, the necessary 

convexity condition required for the functional J with 

parameters IH, IF, IC, µ1, µ2, µ3, µ4 and µ5 holds. The right set 

of the system of equations (25-37) is linearly bounded 

because of the fact that a priori variable T is bounded, which 

implies that other state variables are also bounded.  

Boundedness and the fact that the bounds are finite guarantee 

the required compactness for the existence of optimal 

control. The initial conditions are  2+(0), 2/(0), 2� (0). 

Since now we have assured the existence of an optimal 

control, we can use Pontryagin’s Maximum principle to solve 

the optimal control problem. 

3.2. Characterization of Optimal Control 

Theorem 4 The optimal control which minimizes the 

functional J given in (38) under the constraints given by the 

system of differential equations (25-37) is given by: 

^�∗ = max �6�, min ���, 1j� �(�` − ��)(1 − 5)67 2+,+ 0� + (�d − ��T)(1 − 5)6� 2�,+ 0+��� 
^\∗ = max �6\, min ��\, C+j\ ��d1+ + ��2+��� 
^∗̀ = max �6`, min ��`, 1j` ����/� + �`��1� − �c��2� + ����0���� 
^c∗ = max �6c , min ��c, 1jc �(�` − ��)569 2/,/ 0� + (�� − ���)56F 2�,/ 0/��� 
^d∗ = max �6d, min ��d, C/jd ���2/ + ��1/��� 

Proof 

Let � = (�, �, 1� , 2� , 1+ , 2+ , 1/ , 2/ , 0� , 0+ , 3+ , 0/ , 3/) ∈ � × Γ, U = (μ�, μ\, μ`, μc, μd)  ∈  Λ and Π = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, 

λ8, λ9, λ10, λ11, λ12, λ13) be the adjoint variables. We define the Lagrangian (Hamiltonian increased penalties) associated with the 

problem defined above: 

ℒ(�, �, �) = ��2+ + �\2� + �`2/ + 12 j�^�\ + 12 j\^\\ + 12 j`^\̀ + 12 jc^c\ + 12 jd^d\ + ������� f1 − ���g − (�� + �� + �/^`)�� + �\����
− ���� + �`�(1 − ^�)(1 − 5)67 2+,+ 0� + (1 − ^c)569 2/,/ 0� − (;G�+��^`)1�� + �c�;�1� − (�� + ��^`)2��
+ �d�(1 − ^�)(1 − 5)6� 2�,+ 0+ − (;G++^\C+)1+ � + ���;+1+ − (CG++^\C+)2+  �
+ �� �(1 − ^c)56F 2�,/ 0/ − (;G/+C/^d)1/  � + ���;/1/ − (CG/ + C/^d)2/  �
+ �� ����∗ − (�� + ��^`)0� − (1 − ^�)(1 − 5)67 2+,+ 0� − (1 − ^c)569 2/,/ 0��
+ ��T ��+,+ + B+3+ − (1 − ^�)(1 − 5)6� 2�,+ 0+ − �+0+ � + ��� ��/,/ + B/3/ − (1 − ^c)56F 2�,/ 0/ − �/0/  �
+ ��\ ��/,/ + B/3/ − (1 − ^c)56F 2�,/ 0/ − �/0/� + ��`�C+2+ − (�+ + B+)3+ � + ��(^� − 6�) + �\(�� − ^�)
+ �`(^\ − 6\) + �c(�\ − ^\) + �d(^` − 6`) + ��(�` − ^`) + ��(^c − 6c) + ��(�c − ^c) + ��(^d − 6d)+ ��T(�d − ^d) 
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Where ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8, ω9 and ω10 are penalty variables (multipliers) attached to control µ1, µ2, µ3, µ4 and µ5. 

These penalty multipliers must meet the following conditions: 

ω1(t)(µ1(t) −a1) = 0; ω2(t)(b1 −µ1(t)) = 0 

ω3(t)(µ2(t) −a2) = 0; ω4(t)(b2 −µ2(t)) = 0 

ω5(t)(µ3(t) −a3) = 0; ω6(t)(b3 −µ3(t)) = 0 

ω7(t)(µ4(t) −a4) = 0; ω8(t)(b4 −µ4(t)) = 0 

ω9(t)(µ5(t) −a5) = 0; ω10(t)(b5 −µ5(t)) = 0 

In addition, the differential equations which govern the adjoint variables are obtained by differentiating the Lagrangian (as 

per Maximum Principle):  

����A = − �ℒ�� ; ��\�A = − �ℒ�� ; ��`�A = − �ℒ�1� ;  ��c�A = − �ℒ�2� ;  ��d�A = − �ℒ�1+ ; 
����A = − �ℒ�2+ ;  ����A = − �ℒ�1/ ;  ����A = − �ℒ�2/ ;  ����A = − �ℒ�0�  

For these adjoint variables, we must have λi (T) = 0, i = 1, 2,···, 9, these are the transversality conditions called also 

marriage conditions. 

The value of the optimal control can be characterized at each time t ∈ [0, T] noting that it minimizes the Lagrangian 

(Pontryagin’s Maximum Principle) and that’s at this optimal control, variables must satisfy the necessary condition: �ℒ��∗ = 0 with £∗ =  (^�∗, ^\∗ , ^∗̀ , ^c∗ , ^d∗) where £∗ =  ((^�∗, ^\∗ , ^∗̀ , ^c∗ , ^d∗) is the optimal quintuplet. 
Given that  

ℒ = 12 j�^�\ + 12 j\^\\ + 12 j`^\̀ + 12 jc^c\ + 12 jd^d\ + ���−�/^`��  + �`�(1 − ^�)(1 − 5)67 2+,+ 0� + (1 − ^c)569 2/,/ 0� − ��^`1��
+ �c�−(��^`)2�� + �d�(1 − ^�)(1 − 5)6� 2�,+ 0+ − (^\C+)1+  � + ���−(^\C+)2+  �
+ �� �(1 − ^c)56F 2�,/ 0/ − (C/^d)1/  � + ���−(C/^d)2/  �
+ �� �−(��^`)0� − (1 − ^�)(1 − 5)67 2+,+ 0� − (1 − ^c)569 2/,/ 0�� + ��T �−(1 − ^�)(1 − 5)6� 2�,+ 0+ �
+ ��� �−(1 − ^c)56F 2�,/ 0/  � + ��\ �−(1 − ^c)56F 2�,/ 0/� + ��(^� − 6�) + �\(�� − ^�) + �`(^\ − 6\)
+ �c(�\ − ^\) + �d(^` − 6`) + ��(�` − ^`) + ��(^c − 6c) + ��(�c − ^c) + ��(^d − 6d) + ��T�b5 − μ5 + (terms without µ1 nor µ2 nor  µ3 nor  µ4 nor µ5)  

Differentiating ℒ with respect to µ1, µ2, µ3, µ4 and µ5 gives respectively: 

∂ℒ∂μ� = B�μ� − λ`(1 − p)ac IXNX S´ − λd(1 − p)ab IŃX SX + λ�(1 − p)ac IXNX S´ + λ�T(1 − p)ac IŃX SX + w� − w\ 
�ℒ�^\ = j\^\ − �dC+1+ − ��C+2+ + �` − �c 

�ℒ�^` = j`^` − ���/� − �`��1� + �c��2� − ����0� + �d − �� 

�ℒ�^c = jc^c − �`569 2/,/ 0� − ��56F 2�,/ 0/ + ��569 2/,/ 0� + ���56F 2�,/ 0/ + �� − �� 

�ℒ�^d = jd^d − ��C/1/ − ��C/2/ + �� − ��T 
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At (^�∗, ^\∗ , ^∗̀ , ^c∗ , ^d∗), we have  
�ℒ�z{ =  �ℒ�z| = �ℒ�z} = �ℒ�z~ = �ℒ�z� = 0 

These equalities give: 

=>
>?
>>
@j�^� − �`(1 − 5)67 2+,+ 0� − �d(1 − 5)6� 2�,+ 0+ + ��(1 − 5)67 2+,+ 0� + +��T(1 − 5)67 2�,+ 0+ + �� − �\ = 0

j\^\ − �dC+1+ − ��C+2+ + �` − �c = 0 j`^` − ���/� − �`��1� + �c��2� − ����0� + �d − �� = 0 
jc^c − �`569 2/,/ 0� − ��56F 2�,/ 0/ + ��569 2/,/ 0� + ���56F 2�,/ 0/ + �� − �� = 0

jd^d − ��C/1/ − ��C/2/ + �� − ��T = 0
 

Hence, we get the optimum 

^�∗ = 1j� �(�` − ��)(1 − 5)67 2+,+ 0� + (�d − ��T)(1 − 5)6� 2�,+ 0+ − �� + �\� 
^\∗ = C+j\ ��d1+ + ��2+  − �` + �c� 

^∗̀ = 1j` ����/� + �`��1� − �c��2� + ����0� − �d + ��� 
^c∗ =  1jc �(�` − ��)569 2/,/ 0� + (�� − ���)56F 2�,/ 0/ − �� + ��� 

^d∗ = C/jd ���2/ + ��1/ − �� + ��T� 
For a more explicit formula for optimal controls without ω1, ω2, ω3, ω4, ω5 and ω6, we use standard techniques. For this 

purpose, we consider 15 cases, with 3 cases for each optimal control: 

1) Case 1 

In the set oA, 6� < ^�∗ < �� r, ��(^�∗ − 6�) = �\(�� − ^�∗) = 0 ⟹ �� = �\ = 0 

So the optimal control is 

^�∗ = 1j� �(�` − ��)(1 − 5)67 2+,+ 0� + (�d − ��T)(1 − 5)6� 2�,+ 0+� 

2) Case 2 In the set  ot, μ�∗ = b� r, b� = μ�∗ = �·{ ¸(λ` − λ�)(1 − p)ac ¹º»º S´ + (λd − λ�T)(1 − p)ab ¹¼»º SX + w\½ 
So the optimal control is μ�∗ = �·{ ¸(λ` − λ�)(1 − p)ac ¹º»º S´ + (λd − λ�T)(1 − p)ab ¹¼»º SX½ ≤ b� 
With  �\(A) ≥ 0 

3) Case 3 

In the set oA, ^�∗ = 6� r, ��(^�∗ − 6�) = �\(�� − ^�∗) = 0 ⟹ �\ = 0, from where 

6� = ^�∗ = 1j� �(�` − ��)(1 − 5)67 2+,+ 0� + (�d − ��T)(1 − 5)6� 2�,+ 0+ − ��� 

and therefore  μ�∗ = �·{ ¸(λ` − λ�)(1 − p)ac ¹º»º S´ + (λd − λ�T)(1 − p)ab ¹¼»º SX½ ≥ a� 
With  ��(A) ≥ 0 

4) Case 4 In the set ot, a\ < μ\∗ < b\r, w`(μ\∗ − a\) = wc(b\ − μ\∗ ) = 0 ⟹ w\ = wc = 0 So the optimal control is μ\∗ = Àº·| �λdEX + λ�IX� 
5) Case 5 In the set  ot, μ\∗ = b\ r, w`(μ\∗ − a\) = wc(b\ − μ\∗ ) = 0 ⟹ w`(t) = 0, hence b\ = μ\∗ = Àº·| �λdEX + λ�IX + wc�. As wc(t) ≥ 0, so the optimal control is 

^\∗ = D*Â| ��d1+ + ��2+�  ≤ �\. 

6) Case 6 In the set  ot, μ\∗ = a\ r, w`(μ\∗ − a\) = wc(b\ − μ\∗ ) = 0 ⟹ wc(t) = 0, hence 
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a\ = μ\∗ = Àº·| �λdEX + λ�IX − w`�. As w`(t) ≥ 0, so the optimal control is 

^\∗ = D*Â| ��d1+ + ��2+�  ≥ 6\. 

With these three cases, we rewrite the expression of the second control: 

^\∗ = max �6\, min ��\, C+j\ ��d1+ + ��2+��� 

7) Case 7 

In the set  ot, a` < μ∗̀ < b`r, wd(μ∗̀ − a`) = w�(b` − μ∗̀ ) = 0 ⟹ wd(t) = w�(t) = 0 

So the optimal control is^∗̀ = �Â} ����/� + �`��1� − �c��2� + ����0�� 
8) Case 8 

In the set  oA, ^∗̀ = �` r, �d(^∗̀ − 6`) = ��(�` − ^∗̀) = 0 ⟹ �d(A) = 0, hence 

�` = ^∗̀ = �Â} ����/� + �`��1� − �c��2� + ����0� + ���. As ��(A) ≥ 0, Ão the optimal control is 

^∗̀ = �Â} ����/� + �`��1� − �c��2� + ����0��. ≤ �`. 

9) Case 9 

In the set  ot, μ∗̀ = a` r, wd(μ∗̀ − a`) = w�(b` − μ∗̀ ) = 0 ⟹ w�(t) = 0, hence 6` = ^∗̀ = �Â} ����/� + �`��1� − �c��2� + ����0� − �d�. As�d(A) ≥ 0, Ão the optimal control is 

^∗̀ = �Â} ����/� + �`��1� − �c��2� + ����0��. ≥ 6`. 

With these nine cases, we rewrite the expression of the third control: 

^∗̀ = max �6`, min ��`, 1j` ����/� + �`��1� − �c��2� + ����0���� 

10) Case 10 

In the set  ot, ac < μc∗ < bcr, w�(μc∗ − ac) = w�(bc − μc∗ ) = 0 ⟹ w�(t) = w�(t) = 0 

So the optimal control is ^c∗ = �Â~ Ä(�` − ��)569 8.). 0� + (�� − ���)56F 8�). 0/Å 

11) Case 11 

In the set oA, ^c∗ = �cr, ��(^c∗ − 6c) = ��(�c − ^c∗) = 0 ⟹ ��(A) = 0, hence �c = ^c∗ = �Â~ Ä(�` − ��)569 8.). 0� + (�� − ���)56F 8�). 0/ + ��Å . �s�� ≥ 0, 
So the optimal control is ^c∗ = �Â~ Ä(�` − ��)569 8.). 0� + (�� − ���)56F 8�). 0/Å ≤ �c 

12) Case 12 

In the set  ot, μc∗ = acr, w�(μc∗ − ac) = w�(bc − μc∗ ) = 0 ⟹ w�(t) = 0, hence 6c = ^c∗ = �Â~ Ä(�` − ��)569 8.). 0� + (�� − ���)56F 8�). 0/ − ��Å . �s �� ≥ 0, 
So the optimal control is ^c∗ = �Â~ Ä(�` − ��)569 8.). 0� + (�� − ���)56F 8�). 0/Å ≥ 6c 

With these three cases, we rewrite the expression of the third control: 

^c∗ = max �6c , min ��c, 1jc �(�` − ��)569 2/,/ 0� + (�� − ���)56F 2�,/ 0/��� 

13) Case 13 

In the set  oA, 6d < ^d∗ < �dr, ��(^d∗ − 6d) = ��T(�d − ^d∗) = 0 ⟹ ��(A) = ��T(A) = 0 

So the optimal control is ^d∗ = D.Â� ���2/ + ��1/� 
14) Case 14 

In the set oA, ^d∗ = �dr, ��(^d∗ − 6d) = ��T(�d − ^d∗) = 0 ⟹ ��(A) = 0, hence �d = ^d∗ = D.Â� ���2/ + ��1/ + ��T�. As ��T(A) ≥ 0, Ão the optimal control is 
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^d∗ = C/jd ���2/ + ��1/� ≤ �d 

15) Case 15 

In the set  oA, ^d∗ = 6dr, ��(^d∗ − 6d) = ��T(�d − ^d∗) = 0 ⟹ ��T(A) = 0, hence 6d = ^d∗ = D.Â� ���2/ + ��1/ − ���. As ��(A) ≥ 0, Ão the optimal control is 

^d∗ = D.Â� ���2/ + ��1/�  ≥ 6d. 

With these three cases, we rewrite the expression of the third control: 

^d∗ = max �6d, min ��d, C/jd ���2/ + ��1/��� 

In summary, we obtain the control (μ�∗ ,  μ\∗ , μ∗̀ , μc∗ , μd∗ ) that optimizes the functional J under the constraints given by the 

system of differential equations (25-37), its expression is given by the optimal quintuplet defined by: 

^�∗ = max �6�, min ���, 1j� �(�` − ��)(1 − 5)67 2+,+ 0� + (�d − ��T)(1 − 5)6� 2�,+ 0+��� 
^\∗ = max �6\, min ��\, C+j\ ��d1+ + ��2+��� 
^∗̀ = max �6`, min ��`, 1j` ����/� + �`��1� − �c��2� + ����0���� 
^c∗ = max �6c , min ��c, 1jc �(�` − ��)569 2/,/ 0� + (�� − ���)56F 2�,/ 0/��� 
^d∗ = max �6d, min ��d, C/jd ���2/ + ��1/��� 

This completes the proof of the Theorem. 

4. Numerical Results 

Table 1. Description of model parameters, indicating baselines, ranges and references. 

Parameter Description Baseline value Value range with time unit = 1 day 

�� Rate of maturation from pupal to adult fly 1/30 1/60 to 1/22 [30] 

�+ Human population birth rate = death rate 1/(50 x 360) 10 to 40 births per 1000 per year [40] 

�/ Cattle population birth rate = death rate 1/(15 x 360) guess 

�� Fly death rate 1/33 1/30 to 1/62 [4] 

� Proportion of female flies 6/10 guess, female flies are more abundant than males 

�� Pupa death rate 1/100 guess; in natural conditions very few pupae die 

�� Pupa carrying capacity 300000 guess 

�� Larva birth rate 0.6/9 An adult female is expected to produce one larva every 9 days. [10, 39] 

;� Incubation rate of the flies 1/25 1/30 to 1/25 [5] 

;+ , ;/ Incubation rate of humans, cattle 1/12  

6 Fly biting rate 1/4 1/10 to 1/3: a fly is expected to have 1 bite every 3-10 days [36] 

5 Proportion of tsetse fly bites on cattle 0.7 Table 2 [35] 

�, F 
Probability that an infectious fly infects a 
human, cattle 

0.62 Table 2 [35] 

7, 9 
Probability that a fly becomes infected 

after biting an infectious human, cattle 
0.01 Table 2 [35] 

C+ , C/ 
Human, cattle rate of progression from 

stage 1 to stage 2 
1/30; 1/25 Table 2 [35] 

B+;  B/  

Human, cattle rate of progression from 
stage 2 to recovery and loss of temporary 

immunity for untreated humans, cattle 

1/90; 1/75 Table 2 [35] 
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Figure 2. Control with p = 1.0 and a= 0.25.  

 

Figure 3. Control with p = 0.7 and a = 1.00. 

 

Figure 4. Control with p = 0.7 and a = 0.25. 

 

Figure 5. Control with p = 0.7 and a = 1.00. 

Figures 2, 3, 4 and 5 are plots with different values of a 

and p. The value a = 0.25 means that flies take one blood 

meal in four days and the value a = 1 means flies take one 

blood meal very day. In the other hand, the value p = 0.7 

shows the preference of blood meal taken by flies on cattle as 

given below. We assume the carrying capacity of the tsetse 

pupae KL = 300000, the human population NH = 300, and the 

cattle population NC = 50. Baseline parameter values given in 

Table 1 were collected from the literature on HAT in West 

Africa as cited, and values that were not found in the 

literature were estimated. Values from Table 1 gives r = 

1.0154, the number of larvae �∗ = 4545, and the number of 

adult flies �∗ = 5000. Note that since by our assumptions 

compartments RH and RC contain hosts in stage 2 (or in 

treatment) and recovered hosts, 
�D* + �E*= 30 + 90 days and 

�D. + �E.= 25 + 75 days have the same values as given by 

Rogers [35] for the sums of the duration of infection and 

immunity in species 1 and 2, although the definitions of our 

parameters are different. Stage 1 of T. b. gambiense HAT in 

humans in Africa may last for several months [2] (i.e. C+ may be much smaller than the above value). Thus our 

baseline values apply more to our model with treatment 

giving control reproduction numbers. 

5. Concluding 

We have built a model that includes the most important 

mechanisms of transmission of sleeping sickness between a 
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host population and a vector population. First fly growth 

dynamics is modeled. We use it because unlike most flies, 

once fertilized the tsetse fly generally keeps its eggs and each 

birth, one larva is hatched. In addition, the tsetse flies of both 

sexes are blood-sucking insects. A SEI model was used to 

express the different states of infection of the tsetse fly. For 

the host population, we modeled the dynamics of a SEIRS 

model. A coupled model was obtained and analyzed. A 

mathematical analysis of the model was made. The 

equilibrium points  of the model were calculated and 

presented. The study of the system’s stability of these 

equilibrium points was presented. A numerical simulation of 

the system illustrates the theoretical results obtained and 

discussed throughout this study. 

We built optimal control problem to assess the efficiency 

of three control measures to reduce the number of infections 

in the human population. The study of the proposed model 

allows us to know when the controls efforts should be 

applied, and the importance to be given to each of these 

vector control efforts, the treatment to administer to patients 

infected by the sleeping disease and the various means of 

prevention to avoid or reduce the host-vector contact. These 

efforts can obviously be applied to a finite time interval [0, 

T]. The model does not allow us to make long-term 

predictions of the disease dynamics. We have shown the 

existence of optimal controls for the cost minimization 

problem (quadratic) to reduce the densities of infected 

individuals in the population, namely the individuals who 

constitute the germ reservoir and the essential agents in the 

spread of infection. 
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