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Abstract: Maintenance based on equipment operability checks is widely used for technical systems of various physical nature. 

For commercial and military aircraft such checks are carried-out after a certain amount of time according to specific maintenance 

programs. Therefore, great attention in the research literature is paid to the mathematical modeling of maintenance on the basis of 

equipment operability checks. In this study, a mathematical model of corrective maintenance with operability checks at discrete 

times for the safety critical systems is considered. The criterion of the corrective maintenance effectiveness is proposed to 

provide a given level of operational reliability with minimum maintenance costs. A finite time interval is considered for modeling 

the moments of the system operability checks. The graph of decision making is analyzed for imperfect operability checks and the 

probabilities of possible decisions are determined. Analytical equations for the operational reliability and expected maintenance 

costs are derived for an arbitrary distribution of time to failure. The criteria of determining optimal policies of sequential checks 

are formulated. Numerical examples illustrate the developed theory. For the first time it has been shown that conditional 

probabilities of correct and incorrect decisions when checking system operability are dependent on the time of failure and 

parameters of the degradation model. Numerical calculations have shown that in the case of mixing deteriorating systems with 

different initial time points of operation, the interval between operability checks converges to a constant periodicity. 
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1. Introduction 

At present, corrective maintenance based on operability 

checks is widely used to maintain the operational reliability 

of various technical systems. Evidence of this is a large 

number of publications on periodic and sequential plans of 

operability checks. Mathematical models of corrective 

maintenance based on operability checks can be 

conditionally divided into the two groups: models with 

perfect checks and models with imperfect checks. Models 

with perfect checks were considered in a large number of 

publications, for example, in [1-5]. In these studies, the 

problems of determining the optimal moments of checks are 

considered. The criterion of optimization is the minimum of 

expected maintenance costs, which includes the cost of 

checks, losses due to the unrevealed failure and cost of the 

system repair. The plans of checks can be sequential and 

periodic. Let us now turn to the analysis of maintenance 

models with imperfect checks. A typical inspection model 

with two imperfect inspection probabilities is analyzed in [6]. 

The system under testing may be judged as failed even if it is 

operable or the system may be incapable of detecting its 

failure due to imperfect inspection. The optimal policy that 

minimizes the total expected cost up to the detection of 

system failure is considered. An imperfect-inspection model 

in which failures can only be detected with probability p < 1 is 

considered in [7]. The exponential distribution of time to 

system failure is supposed. The asymptotic distribution of the 

test statistic is obtained under the null hypothesis as well as 

under the alternative. In [8], a maintenance model with 

periodic checks is examined to detect and eliminate 

unrevealed failures. Imperfect periodic checks are conducted 

with periodicity τ in the finite time interval [0, (n + 1) τ]. For 

any of the checks, the failure of the system is detected with 

probability p∈ (0, 1). After detecting failure, corrective repair 

is performed, which is equivalent to replacing the system with 

a new one. If there was no failure on the interval [0, (n + 1) τ] 

or it was not detected, then at the time (n + 1) τ the system is 
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replaced by a new one. The goal is to determine the optimal 

frequency of imperfect checks between preventive 

maintenance, which minimizes the cost of maintenance per 

unit time. In [9-12], the maintenance models based on 

imperfect checks are considered with two types of errors: 

“false alarm” with probability α and “undetected failure” with 

probability β and, accordingly, correct solutions with 

probabilities 1 - α and 1 - β. It should be noted that in [6-12] 

the probabilities of correct and incorrect decisions are 

assumed to be independent of the time and the degradation 

process parameters, therefore, these models are not fully 

adequate to the real maintenance processes. 

In this study, a new maintenance model is developed for 

determining optimal moments of operability checks for 

safety critical systems. The proposed maintenance model 

takes into account the dependence of the probabilities of 

correct and incorrect decisions on the time and parameters of 

the degradation process. 

2. Decision Rule When Checking System 

Operability 

Assume that the operation of the new system begins at time 

t = 0 and scheduled checks are conducted in times t1 < t2 < ⋯ 

tM < T, where T is the finite time horizon. At time T the system 

is not checked. If the system has not been rejected before the 

time T, then a preventive maintenance is performed, renewing 

its state. It is also assumed that the state of the system is 

completely determined by the value of the parameter L (t), 

which is a non-stationary random process with continuous 

time. If the value of L (t) exceeds the functional failure 

threshold FF, the system goes into an inoperable state. The 

result of measurement of L (t) at time tk can be represented as 

( ) ( ) ( )k k kX t L t Y t+=             (1) 

where Y (tk) is the measurement error or noise at time tk. 

When checking the system operability at time tk the 

following decision rule is used: if x (tk) < FF, the system is 

judged as operable; if x (tk) ≥ FF, the system is judged as 

inoperable. If x (tk) ≥ FF, then a repair (preventive, if l (tk) < 

FF and corrective, if l (tk) ≥ FF) of the system is performed at 

time point tk. 

Depending on the results of operability checking at time tk 

the following decisions can be made: if the system is judged as 

operable, then it is allowed to use in the time interval (tk, tk+1); 

if the system is judged as inoperable, it is repaired and allowed 

to use in the time interval (t0, t1). For periodic checks, the 

interval (0, T) is divided equally into M + 1 sub-intervals and 

the system is periodically checked at time points kτ (k = 1, 

2, …, M), where M = T/τ - 1. 

3. Graph of Decision Making 

Graph of decision making when checking the system 

operability is shown in Figure 1. According to Figure 1, a 

priori the system can be found in one of the following two 

states at time tk: operable with probability P (tk) and inoperable 

with probability 1 – P (tk), where P (t) is the system reliability 

function. 

The event Γ1 (tk) corresponds to a “true positive” at time tk. 

 

Figure 1. Graph of decision making when checking system operability. 

The event Γ2 (tk) corresponds to a “false alarm” at time tk. 

The event Γ3 (tk) corresponds to a “missed detection” at time tk. 

The event Γ4 (tk) corresponds to a “true negative” at time tk. 

The events Γ1 (tk) and Γ4 (tk) correspond to correct decisions 

and the events Γ2 (tk) and Γ3 (tk) – to incorrect decisions. 

Let us denote the random time to system failure by H with 

the probability distribution function (PDF) ω (η). Consider the 

random variable Hk, representing an estimate of the random 

variable H on the results of operability checking at instant tk. 

Random variables H and Hk are the solutions of the following 

stochastic equations: 

( ) 0L t FF− =                   (2) 

( ) 0kX t FF− =                   (3) 

Since in (3) random variable X (tk) is an additive function of 

random variables L (tk) and Y (tk), then random error ∆k in 

evaluation of time to failure at time tk can be represented as 

follows 

, 1, 2, ...k k k∆ = Η − Η =            (4) 

Let us formulate the conditional probabilities of the events 

when checking the system operability at time tk in terms of the 

random variables H and Hk. Assume the system failure occurs 

at time η, where tk < η ≤ tk+1 (k = 0, 1, …, M). Then, the 

conditional probability of a “true positive” at time tµ (µ = 1, …, 

k) under the condition that H = η is formulated as 

( ) µ

µ
1

η η∩TP i i
i

P t P t
=

 = Η > Η = 
 

         (5) 

The conditional probability of a “false alarm” at time tµ (µ = 

1, …, k) under the condition that H = η is formulated as 

( ) ( ) µ-1

µ µ µ
1

η η∩ ∩FA i i
i

P t P t t
=

  = Η Η > Η =  
 

≤


   (6) 

The conditional probability of a “true negative” at time tj (j 

= k + 1, …, M) under the condition that H = η is formulated as 
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( ) ( ) -1

1

η η∩ ∩
j

TN j j j i i
i

P t P t t
=

  = Η Η > Η = 


≤ 
 

   (7) 

The conditional probability of a “missed detection” at time 

tj (j = k + 1, …, M) under the condition that H = η is formulated 

as 

( )
1

η η∩
j

MD j i i
i

P t P t
=

 = Η > Η = 
 

          (8) 

The calculation of the conditional probabilities (5)-(8) is 

equivalent to computing the probability of hitting the random 

point {H1,..., Hk} within the k - dimensional domain, which is 

formed by the variation limits of each random variable. 

Let us consider the joint conditional PDF Λ (δ1,…,δk|η) of 

random variables ∆1, …,∆k under the condition that H = η. 

The µ - dimensional domain with limits ti – η ≤ ∆i < ∞ (i = 

1, …, µ, µ = 1, …, k) corresponds to the conditional 

probability of a “true positive”. Integrating the PDF Λ (δ1,…, 

δµ|η) within these limits gives 

( ) ( )
µ 1

µ 1 µ 1 µ
η η

η ... , ηTP
t t

P t z z dz dz
∞ ∞

− −
= Λ∫ ∫         (9) 

The µ - dimensional domain with limits ti – η ≤ ∆i < ∞ (i = 

1, …, µ - 1) and – ∞ < ∆µ ≤ tµ – η corresponds to the 

conditional probability of a “false alarm”. Integration of the 

PDF Λ (δ1,…, δµ|η) within the specified limits results in 

( ) ( )µ

µ 1 1

η

...µ 1 µ 1 µ
η η

η , η
t

FA
t t

P t z z dz dz
−

− ∞ ∞

−∞ − −
= Λ∫ ∫ ∫      (10) 

The j - dimensional domain with limits ti – η ≤ ∆i < ∞ (i = 

1, …, j – 1) and – ∞ < ∆j ≤ tj – η (j = k + 1, …, M) corresponds 

to the conditional probability of a “true negative”. Integrating 

the PDF Λ (δ1,…, δj|η) within the specified limits gives 

( ) ( )
1 1

η

... 1 1
η η

η , η
j

j

t

TN j j j
t t

P t z z dz dz
−

− ∞ ∞

−∞ − −
= Λ∫ ∫ ∫      (11) 

The j - dimensional domain with limits ti – η ≤ ∆i < ∞ (i = 

1, …, j, j = k + 1, …, M) corresponds to the conditional 

probability of a “missed detection”. Integrating the PDF Λ 

(δ1,…, δj|η) within the specified limits gives 

( ) ( )
1

1 1
η η

η ... , η
j

MD j j j
t t

P t z z dz dz
∞ ∞

− −
= Λ∫ ∫       (12) 

4. Maintenance Key Performance 

Indicators for Safety Critical Systems 

The operational reliability is the most important 

maintenance key performance indicator for the safety-critical 

systems. Examples of such systems can be aircraft engines, 

equipment of nuclear power plants, etc. The expected cost of 

maintenance can be used as the second maintenance 

effectiveness indicator. The operational reliability POR (tk, t) is 

defined as the probability of the system failure-free operation 

in the interval (tk, t), tk < t ≤ tk+1 considering the fact that at time 

points t1, …, tk the scheduled operability checks are performed 

and unscheduled repairs are carried-out if the system is judged 

as inoperable. 

Operational reliability of the system, which is checked at 

discrete time points, is determined as follows: 

( ) ( )
( )

( ) ( )
0

0

, ω

ω

Tk R j

OR k TP k jT t
jj t t

j

P t
P t t P t t z z dz

g dg

−= −
= −∑ ∫

∫
  (13) 

where PR (tj) is the probability of repairing the system at time 

tj. 

The probability PR (tj) is given by 

( ) ( ) ( )R j PR j CR jP t P t P t= +             (14) 

where PPR (tj) and PCR (tj) are, respectively, the probability of 

preventive and corrective repair. 

Preventive repair at time tj is associated with a “false alarm” 

event occurred by the results of operability checking at time tj. 

Corrective repair at time tj is associated with a “true negative” 

event occurred at time tj. 

The probability of the preventive repair at time tj can be 

represented as 

( ) ( )

( )
( ) ( )

1
ν

ν
νν 0

ν

0

ω

ω

Tj
R

PR j FA jT t
t t
j

P t
P t P t t z z dz

g dg

−

−
= −

= −∑ ∫

∫
  (15) 

The probability of the corrective repair at time tj is 

determined as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
ν

ν

1 ν

ν
ν 0 0

ν ν
0

1 ω

ω ω
j

j

T tj

CR j PR j R

t t T

MD j TP j
t t

P t P t P t g dg

P t t z z dz P t t z z dz

−−

=

−

−

 
= − − ×∑  ∫

  

  − + −∫ ∫ 
  

  (16) 

Let us begin with the proof of (14). Consider the following 

events: R (tj) is the event consisting in the repair of the system 

at time tj after the j-th operability check, PR (tj) and CR (tj) are 

the events consisting in the preventive or corrective repair of 

the system, respectively. The system will be repaired at time tj 

if either of the events PR (tj) or CR (tj) occurs. Therefore, 

( ) ( ) ( )j j jR t PR t CR t= +             (17) 

From Figure 1 follows that events PR (tj) and CR (tj) are 

mutually exclusive because they are based on the 

incompatible events Γ2 (tj) and Γ4 (tj). Applying the addition 

theorem to (17), we obtain (14). 

Let us now prove (13). The probabilistic definition of the 
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operational reliability POR (tk, t) can be represented as follows: 

( ) ( )
0 1

, ∪ ∩ ∩ ∩
k k

OR k j i
j i j

j i jP t t t t tt P R t T
= = +

    = Η ≤ Η   
  

− < >
 

−


                      (18) 

Assume that last repair was at time tj. Since the scheduling 

of the operability checks is carried out over a finite time 

interval (0, T), the random variable H is determined in the 

interval (0, T - tj) with the conditional PDF 

( ) ( ) ( )
0

ω η ω η ω0
jT t

jT t g dg
−

< Η ≤ − = ∫      (19) 

Assume that the system failure occurs after the j-th check in 

the interval from η to η + dη. The probability of this event is 

determined as 

( ) ( )
1

η

η ω

η η

η 0 η

∩∩
k

i
i

T k

j
j

P j j

iP

P t t T t

d t

d

t
= +

   Η = < Η ≤ + > −

<


   

− Η ≤ −

      (20) 

The probability of event 

1

∩ ∩ i j

k

j i
i j

Tt t t t
= +

 
− Η 


< ≤ −


Η >          (21) 

is determined by integrating (20) over the region of existence 

of the random variable H, i.e. 

( ) ( )
1

0ω

∩ ∩

j

k

j i
i j

T

TP k

i j

j j
t t

P t t

P t t

T t t

z z T t dz

= +

−

   − Η =  
  

< Η ≤ > −


− ≤< Η −∫

      (22) 

Substituting (19) into (22) gives 

( )
( ) ( )

1

0

1
ω

ω

∩∩
k

j i
i j

T

TP k jT t
j t

j

i j

t

P t t

P t t z

T t t

z dz

g dg

= +

−
−

   − Η =  
  

< Η ≤ >

−

∫

−
 

∫
     (23) 

The joint probability of the events (17) and (21) can be 

found using the multiplication theorem of probability for 

independent events 

( )

( )
( )

( ) ( )

1

0

ω

ω

∩ ∩∩

j
j

k

j j i
i j

TR j

TP k jT t
t t

i jP R t t t

P t
P t t z z dz

g dg

T t t
= +

−
−

    − Η =   
    

< Η ≤

−

∫

> −


∫

  (24) 

The events R (t0), …, R (tk) are independent because the 

system can be repaired at any of the time points t0, …, tk 

and after any repair the system becomes as good as the 

new. Therefore, summing the probabilities (24) with the 

variation of j from 0 to k gives (13), where PR (t0) = P [R 

(t0)] = 1. Q. E. D. Equations (15) and (16) are proved 

analogously. 

As it was already indicated, the expected corrective 

maintenance costs of the system in the time interval (0, T) can 

be used as the second indicator of the maintenance 

effectiveness. Using the formula for the mathematical 

expectation of a discrete random variable, we obtain 

( ) ( )
1

M

CM PR PR j CR CR j OC
j

E C C P t C P t MC
=
 = + +  ∑      (25) 

where CCM is the random cost of the corrective maintenance, 

CPR and CCR are, respectively, the average cost of the 

preventive and corrective repair, COC is the average cost of the 

operability checking. 

5. Optimization Criteria 

Since we have two indicators for assessing the effectiveness 
of the corrective maintenance, then two criteria of determining 
the optimal moments of operability checks can be proposed. 
The choice of criteria depends on what kind of the 
effectiveness indicator is put in the constraint. If the minimum 
allowable value of the operational reliability P*

 is set, then the 
expected corrective maintenance cost can be minimized. The 
optimization criterion in this case can be formulated as 
follows: 

( )

( ) ( )
1

1 1
,

*

1

, ,min

, 1,

M

opt opt

M CM M
t t

opt opt

OR k k

t t E C t t

P t t P k M+

  ⇒
 


 ≥ =

        (26) 

where 1 ,opt opt

M
t t are the moments of the reliability checks 

providing minimum of the expected corrective maintenance 
costs in the interval (0, T) and the value of the operational 
reliability not less than P*. 

If the maximum expected corrective maintenance costs E 

(C*) is specified, then optimization criterion is formulated as 

follows: 

( ) ( )

( ) ( )
1

1 1
,

*

1

, , 1,max

,

M

opt opt

M OR k k
t t

opt opt

CM M

t t P t t k M

E C t t E C

+
 ⇒ =


   ≤   

    (27) 
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6. Deterioration Model 

To calculate the probabilities of the correct and incorrect 

decisions (9) - (12), which are included into (13)-(16), it is 

necessary to know the PDF Λ (δ1,…, δk|η). This PDF depends 

on the type of stochastic degradation process L (t). Assume 

that the system deterioration process can be described by the 

linear stochastic equation 

( ) 0 1L t L L t= +                 (28) 

where L0 is the random initial value of L (t) and L1 is the 

random velocity of the system deterioration, L1 ∈ (0, ∞). If the 

measurement errors Y (t1), …, Y (tk) are independent random 

variables with PDF Ω (yi), i = 1, …, k then Λ (δ1,…, δk|η) is 

determined as [13] 

( ) ( ) ( ) ( )

( ){ } ( )

1 0 0 0
0

0 0
1

δ ,δ η ω η η

η δ ω η

FF k

k

k

i
i

f l l FF l

l FF dl
=

 Λ = − ×∫  

 Ω −∏  

    (29) 

where f (l0) is the PDF of random variable L0, ω (η|l0) is the 

conditional PDF of random variable H under the condition 

that L0 = l0. 

If the initial value of L (t) in (29) is a constant, i.e., L0 = l0, 

then 

( ) ( )00
1

1

δ
δ ,δ η

η η

k
k

i
k

i

l FFFF l
FF

=

− − Λ = Ω +∏   
   

   (30) 

In the case of a normal distribution of Y (ti), i = 1, …, k the 

PDF (30) can be represented as 

( ) 0
1

1
δ ,δ η

η
σ 2π

k

k

k

y

FF l −
Λ = × 

 

 
 
 

 

( ) 2

0

2
1

δ1
exp

η2σ

k
i

i y

l FF

=

  − −∏   
    

         (31) 

where σy is the standard deviation of Y (ti). 

For k = 1, from (31) we obtain 

( ) 2

00

2

1 δ1
(δ η) exp

η η2σ
σ 2π y

y

l FFFF l
  − −  Λ = −    

      

 
 
 

                       (32) 

Example 1. Let the system state parameter L (t) be the 

output voltage of the power supply of the radar transmitter 

[14]. Suppose that the random error in measuring L (t) has a 

normal distribution law with zero mathematical expectation 

and a standard deviation σy = 1 kV, l0 = 20 kV and FF = 25 kV. 

Figure 2 shows a 3-D image of the conditional PDF Λ (δ1|η), 

which was plotted using the 3D Surface Plotter. 

 

Figure 2. A 3D image of the conditional PDF of the random error in the 

evaluation of the operating time to failure, Λ (δ|η). 

The values on both horizontal axes correspond to the hours. 

As can be seen from Figure 2, with an increase in the failure 

time η, the conditional PDF Λ (δ|η) is flattened, which 

indicates an increase in the variance of the random error in the 

evaluation of the operating time to failure, ∆. 

In Figure 3, the 3D image of the conditional PDF of the 

error in the evaluation of the operating time to failure as a 

function of the arguments δ and σy for η = 300 h is shown. As 

can be seen from Figure 3, with an increase in the standard 

deviation of the measurement error of the system state 

parameter σy, the conditional PDF Λ (δ|η) is also flattened, 

which indicates an increase in the variance of the random error 

in evaluating the operating time to failure, ∆. 

The probabilities of the correct and incorrect decisions 

(9)-(12) are very much dependent on the time of failure η. 

 

Figure 3. 3D image of the conditional PDF of the random error in the 

evaluation of the operating time to failure Λ (δ|η) as a function of the 

arguments δ and σy for η = 300 h. 
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Indeed, assuming that ti = iτ and τ = 100 h, the calculation of 

the probabilities (9)-(12) gives the following values when η = 

275 h: PTP (2τ|η) = 0.914, PFA (2τ|η) = 0.086, PTN (3τ|η) = 

0.675, and PMD (3τ|η) = 0.325. However, when η = 325 h, then 

PTP (2τ|η) = 0.973, PFA (2τ|η) = 0.027, PTN (4τ|η) = 0.876, and 

PMD (4τ|η) = 0.124. 

From this example follows very clear conclusion that 

conditional probabilities of correct and incorrect decisions 

depend on the time of failure and parameters of the 

degradation model. Therefore, assumption of constant 

probabilities of correct and incorrect decisions when 

checking system operability, which is assumed in many 

published papers, is incorrect. The use of constant 

probabilities of correct and incorrect decisions in 

maintenance models leads to significant errors in the 

calculated values of the maintenance effectiveness indicators. 

Example 2. Assume, as in example 1, the system state 

parameter is the output voltage of the radar transmitter’ 

power supply. It is necessary to solve the problem (26) if T = 

5000 h, CPR = 3,000 $, CCR = 10,000 $, COC = 500 $, FF = 20 

kV, l0 = 16 kV, and σy = 0.25 kV. Let the minimum allowable 

value of the operational reliability be P* = 0.95. 

The PDF of time to failure for stochastic process (26) 

when L0 = l0 is determined as [15] 

( ) ( )

( )

2 2 2
1 1 1 0 1

3 3
1

2

0 1

2 2
1

σ σ
ω

2 σ

exp
2σ

m t t FF l m t
t

t

FF l m t

t

π
+ − −

= ×

 − − − 
  

       (33) 

where m1 and σ1 are, respectively, mathematical expectation 

and standard deviation of random variable L1. Assume that m1 

= 0.002 kV/h and σ1 = 0.00085 kV/h. 

Solving problem (26) we determine the following 

sequence of optimal time points of operability checks: {tk, k 

= 1, …, 43} = {1165, 1285, 1380, 1470, 1555, …, 4840, 

4920 h}. The dependence of the operational reliability on the 

operating time indicating the moments of operability checks 

is shown in Figure 4. As can be seen from the sequence of 

operability checks, the time interval between the checks 

decreases and tends to 80 h. The number of operability 

checks, which is necessary to ensure a required operational 

reliability value of 0.95 in the interval (0, 5,000 h), is 43. 

The minimum value of the expected corrective 

maintenance costs in the time interval (0, 5000 h) is 

( ) ( )43 43

1 1

43

3,000 0,258 2,365 10,000 43 500 45,924 $

CM PR PR j CR CR j OC
j j

E C C P t C P t C
= =

= + + × =  ∑ ∑ 

× + × + × =
 (34) 

 

Figure 4. Dependence of the operational reliability on the operating time indicating the moments of operability checks in the interval (0, 5000 h). 

7. Conclusions 

In this study, the key performance indicators of the corrective 

maintenance for the safety-critical systems have been proposed. 

General equations of the operational reliability and expected 

maintenance costs for a system, which is checked at successive 

times, have been derived. Unlike previously published studies, 

the proposed equations have been obtained for the case of 

arbitrary time-to-failure distribution and imperfect checks. To 

determine the optimal moments of operability checks, two 

optimization criteria have been formulated. For the first time it 

has been shown that conditional probabilities of correct and 

incorrect decisions when checking system operability are 

dependent on the time of failure and parameters of the 

degradation model. Numerical calculations have shown that in 

the case of mixing degrading systems with different initial 

points of operation, the interval between checks converges to a 

constant periodicity. 

Nomenclature 

PDF – probability distribution function 
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