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Abstract: An adjusted trinomial model for pricing both European and American arithmetic average-based Asian options is 

proposed. The Kamrad and Ritchken trinomial tree governs the underlying asset evolution. The algorithm selects a subset of 

the true averages realized at each node to serve as the representative averages. The option prices are then computed via 

backward induction and interpolation. The results show that the trinomial method produces more accurate prices especially in 

the case of European style Asian options. 
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1. Introduction 

An Asian option is an exotic path dependent option. Its 

value is pegged on the average underlying asset’s price over 

the option’s life. The averaging feature makes them attractive 

as they are less prone to market manipulation at maturity. This 

also results in them being cheaper than plain European or 

American options. 

Usually the averages that are considered are the arithmetic 

and geometric average. The latter is straight forward as it 

results in a closed form expression for European options in 

line with the classical Black Scholes model [1]. This is 

because geometric average follows the same lognormal 

distribution as the underlying variable thus easing the 

mathematical tractability of the pricing problem. However, 

this is not the case for Asian options priced using the 

arithmetic average which does not follow a lognormal 

distribution. This is in spite of it being far more popular and 

widely used than its geometric average counterpart. 

Due to its wide use there has been numerous attempts to 

tackle the pricing problem of arithmetic average options. Most 

of this models involve some forms of numerical 

approximations. A number of researchers used analytical 

approximation to price Asian options [2] [3], and approximate 

the arithmetic average with the corresponding geometric 

average. While this approaches are straight forward, their 

accuracy is found wanting in some cases. Turnbull and 

Wakeman [4] use edge worth expansions to improve the 

approximations. 

Early models used to solve the partial differential equations 

governing the option’s price encountered problems too. 

Wilmott et al [5] found stability issues when using the explicit 

finite difference method while the implicit finite difference 

method only works with certain volatility structures. Vecer [6] 

came up with a method that overcomes the stability of 

problems encountered before but like all the methods 

mentioned above it cannot work for American Asian options. 

It is this shortcoming that among others make lattice based 

models more suited for pricing arithmetic average-based 

Asian options. They work not only for European Asian 

options but also for American style Asian options. They are 

also efficient, flexible, and simple to use. The challenge with 

using these models to price Asian options, is the enormous 

number of averages to be kept track of. They increase 

exponentially with an increase in the time steps used. This is 

because unlike the geometric average, the arithmetic average 

does not recombine in the lattice. 

In this paper a pricing method using a trinomial tree is 

proposed. A technique of choosing a smaller set of averages 

from the set of the true averages realized at every node is 

employed in order to tackle the issue of having too many 

averages to track. 



29 Dennis Odhiambo Ogot et al.:  An Adjusted Trinomial Lattice for Pricing Arithmetic Average Based Asian Option  

 

2. Lattice Based Models for Pricing Asian 

Options 

A lattice is made up of node and edges that connect them. 

It is used to simulate the price process of an asset. Suppose 

that an item is written at time t=0 and has time of maturity as 

t =T, the lattice divides the time interval equal time steps. 

This makes it a discrete approximation of what is the 

continuous price process of the underlying. The simplest of 

the lattice methods is the binomial tree method where it is 

assumed that at each time step the price of the underlying can 

only move either up or down. 

Hull and White [7] outlined the first binomial lattice model 

to price arithmetic average-based Asian options. They 

consider a European Asian call option. Their model is based 

on the well-known CRR binomial tree advanced by [8]. The 

underlying’s price either grows by a factor of u or lessens by 

a factor d with a probability of �� and �� at any time step 

where: 

� = exp	(�√∆�) and � = �
�         (1) 

�� = ����(�∆����
��� � ���	�� = 1 − ��		       (2) 

Let �(�, !� represent the price of the underlying at node 

(�, !�  denoting the node arrived at after j upward moves 

followed by (� − !�  downward moves have occurred. To 

combat the huge number of non-recombining averages they 

simulated a smaller set of averages to represent the enourmous 

amount of averages realized at each increasing time step [7]. 

The maximum and minimum averages at time step 	�∆� , 

denoted	"#$%(��	and	"#&'(��	take the form of	()±#+. Here, h 

takes a constant value whereas m represents the least integer 

satisfying the following equations: 

",-.(�� = �)�#+ ≤ �
$0� 1�	"#$%(i − 1� + ��4� − 1,067  (3) 

"#&'(�� = �)�#+ 	 ≥ �
$0� 	1�	"#&'(� − 1� + �	�4� − 1, ! − 167   (4) 

The other averages at that time step 	 take the form 

()9+where :	takes the value of all integers from – (< − 1� 

to (< − 1�. If "	(�, !, :� is the	:�+ average for a particular 

time step, the value of the option denoted =(�, !, :� associated 

with it is then computed by discounting the payoffs form the 

next time step (backward induction) i.e. 

=(�, !, :� = )��∆�	(��	=4� + 1, ! + 1, :�6 + ��	=4� + 1, !, :�6� (5) 

Where	=4� + 1, ! + 1, :�6	and	=4� + 1, !, :�6 correspond to 

"� = 4($0��>	($,?,9�0�@($,?�6
($0A�                 (6) 

and 

"� = 4($0��>	($,?,9�0�	@($,?�6
($0A�                (7) 

=4� + 1, ! + 1, :�6	is then further approximated since its exact 

value is usually not in the set of representative averages. 

Linear interpolation is done using the averages present that are 

closest to "�	and	"�. The same is done for =4� + 1, !, :�6. One 

challenge with this method is that there is no standard way of 

coming up with parameter h which affects how many 

representative averages will be simulated at each time step. 

The option prices calculated are actually indirectly 

proportional to the value of h. This is due to the linear 

interpolation which overestimates the price. Another 

weakness stems from the fact once h is chosen, the price of the 

option is directly proportional to the number of time steps used 

in the tree. 

Forsyth et al [9] improved on the model by choosing h to be 

directly proportional to the size of a time step ∆� so as to 

bring about convergence. Thus their results are more stable 

than those of Hull and White. They set 

	ℎ = αEF.AG
H �A∆�                   (8) 

They however do not prescribe how to choose the values of 

other parameters. 

Costabile et al [10] came up with a highly efficient model 

based on Hull and White. Their key improvement on the 

previous models is that they choose a subset of the actual 

averages at a node unlike in the earlier methods where the 

averages are simulated. At the node (i, j) of the binomial 

lattice, they first calculate the highest average 	"#&' 	(�, !� 

which is the result the price path I#&'(�, !� denoting the path 

starting j up moves followed by(� − !� down moves. The last 

element of the set at each node is the lowest average 

"#$%(�, !�  resulting from I#$%(�, !�,  the path starting with 

(� − !� down moves followed by j up moves. The remaining 

averages are computed recursively as follows. If �#&'(�, !, :� 

denotes the highest underlying asset price realized in the price 

path producing "	(�, !, :� (the k
th 

average) that is not in the 

trajectory I min(�, !� then: 

"	(�, !, : + 1� = "	(�, !, :� − �
L0� 	4	�#&'(�, !, :� −

�#&'(�, !, :��A6             (9) 

This is repeated until the path I#$%(�, !� is reached. Once 

the representatives are obtained, the same backward induction 

described earlier is used to calculate the option’s price. 

One advantage of this method [10] is that there are no other 

parameters that need to be computed beforehand. This would 

have led to the issues encountered in the earlier methods. Also, 

the number of times linear interpolation is required is greatly 

reduced as the set of averages considered are a subset of the 

true realized averages at a particular node. This means that 

more often than not the average required will be found in the 

next time step. In this paper, the aim is to extend this concept 

to a trinomial lattice to see how much better the prices 

computed will be. 

Zvan et al [11] proposes a numerical scheme to price 

American style Asian options using the Crank –Nicolson 

method. Klaasen [12] sets out a binomial method using 512 

time steps to price American Asian options. Instead of linear 

interpolation, he applies Richardson extrapolation to hasten 

convergence. 

Dai [13] proposes a new trinomial lattice that models the 
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underlying price at every node to be a rational number of 

finite precision. It is partitioned into different parts with 

varying resolution hence reducing the number of averages 

considered. It is based on the premise that if the underlying 

asset prices are multiplied by a constant before pricing the 

option, then option value divided by the same constant 

gives the originally desired option value. Convergence is 

ensured by making sure the underlying asset’s price process 

simulated mirrors to the continuous time lognormal price 

process of the underlying. Their work shows that this 

method converges as the time steps used are increased. In 

the next section the proposed trinomial model is laid out in 

more detail. 

3. Proposed Trinomial Algorithm 

The trinomial model allows for us to model a case where the 

asset price now moves on of three ways, up, down or stay in 

the middle. The Kamrad and Ritchken [15] tree matches the 1
st
 

moment and variance in the log space. The asset may increase 

by a factor of 

� = expMN�√∆�O                (10) 

It may decrease by	� = �
�. Additionally it may remain at the 

same level i.e. multiplied by 	< = 1. N  is an important 

Parameter as if not chosen appropriately, the values of the 

probabilities of an up move ��, down move �� and staying at 

the same price, �# may be negative. Boyle [14], found that 

the price are most accurate when all the probabilities are 

roughly equal. Kamrad and Ritchken [15] make this possible 

by choosing: 

N = 1.22474	              (11) 

�� = �
AST + U√∆�

ASV               (12) 

�� = �
AST − U√∆�

ASV 	              (13) 

and 

	�#	 = 1 − �� − �� 	           (14) 

The numeral results in this paper were computed using an 

adjusted trinomial model based on the Kamrad and Ritchken 

trinomial tree. 

The modified trinomial method for pricing Arithmetic 

average based Asian option is an extension of the one used by 

Costabile et al. The modification made is based the method of 

choosing representative averages in order to carter for the 

‘’middle’’ moves in the trinomial tree that were not in the 

binomial tree. Let �$,?	 denote the !�+  node at the ��+  
time 

step. The number of up, middle and down jumps are defined 

as 	W� ,W#  and W�  respectively. Therefore the value of the 

underlying at node j of time step � is 

�$,? = 	 �XY 	�XZ 	�(F,F�	[ℎ)\)	W� + 	 W# + W� = �   (15) 

First, the path I$,?#&' which results in the highest average 

at a particular node denoted by	"$,?#&' is considered. I$,?#&'is 

now the price path constituted by	W� up steps followed by 

W# middle steps and then	W�	down steps to get to�$,?	. "$,?#&' 

is the first representative average at that particular node 

denoted "(�, !, 1� . The :�+  average "(�, !, :�  is then 

recursively calculated using the previous average. The first 

highest average denoted 	�#&'(�, !: : − 1�  realized on the 

previous price path is replaced by	�#&'(�, !: : − 1��. This is 

repeated till the minimum average possible at the particular 

node is reached. This is the average associated with the 

price path	I$,?#$% . This is the path made by W� down steps 

followed by 	W# middle steps and then W� up steps to get 

to �$,?	. 
Once all the averages at the time step � are obtained, the 

payoffs corresponding to the averages are computed. Then the 

option price are computed using the usual induction scheme 

that is; 

=$?	9 = 	 )��∆�	4��=$0�,?
9Y + �#=$0�,?0�

9^ + ��=$0�,?0A
9^ 6  (16) 

In some cases, =$0�,?_� , =$0�,?0�_# 	���	=$0�,?0A_� 	are computed 

via linear interpolation. For American Asian options where 

early exercise is allowed the value of the option at �$,?	is: 

=$,?9 = maxa)��∆�a��=$0�,?
9Y + �#=$0�,?0�

9^ + ��=$0�,?0A
9^ b, �$,?9 − :b (17) 

The model shares the same advantages as the binomial one 

by Costabile et al. Since the representative averages are a 

subset of the true realized averages, the instances where 

interpolation is required are greatly reduced. In fact they are 

even lesser in this case as more averages are computed than in 

the binomial case. 

4. Results 

The results that were computed through the trinomial 

algorithm for both European and American style Asian 

Options are now presented. 

4.1. European Asian Options 

Prices computed using the trinomial model for a 

European call option written on an underlying with an 

initial price of 50, a risk free interest rate is 10% p.a. and a 

volatility of 30%, are compared to those in [10] and [13] 

( when using 30 time steps). Table 1 contains these results 

for different time steps and different exercise prices 

denoted K. The results reveal a slightly faster convergence 

with up to 10 less time steps required to achieve for the 

trinomial method the same price as the binomial scheme of 

Costabile et al. Also, the prices for the trinomial algorithm 

with 30-40 time steps are very close to those of [13] with 30 

time steps. Another observation is the convergence of the 

trinomial scheme is smoother than that of the binomial one 

as seen in figure 1. 
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Table 1. European call option values using the trinomial algorithm, the method by Costabile et al and the multiresolution trinomial lattice by Dai. 

TIME STEPS 
K=40 K=50 K=60 

Costabile Trinomial Costabile Trinomial Costabile Trinomial 

10 11.5276 11.5274 4.5014 4.4877 1.1176 1.1258 

15 11.5348 11.5346 4.5082 4.4992 1.1428 1.14327 

20 11.5384 11.5364 4.5126 4.5094 1.1548 1.1601 

30 11.5413 11.5427 4.5165 4.5149 1.167 1.1706 

40 11.5302 11.5446 4.509 4.5176 1.1665 1.1761 

50 11.5449 11.5454 4.5209 4.5192 1.1778 1.1794 

60 11.5458 11.5463 4.522 4.5205 1.1805 1.1818 

70 11.5463 11.5463 4.5228 4.5213 1.1824 1.1834 

80 11.5467 11.547 4.5233 4.5221 1.1838 1.1846 

90 11.547 11.5472 4.5237 4.5226 1.1849 1.1856 

Dai MR 11.547 4.517 1.170 

 

Figure 1. European Asian option values from the trinomial method and the algorithm by Costabile et al when the exercise price K = 60. 

4.2. American Asian Options 

The results for American style options are compared by 

with the algorithms by [10], [11] and [12]. The option whose 

prices are in Table 2 were written on an underlying with 

initial price of 50, time to maturity of 1 year, a volatility of 

30%, a risk free interest rate of 10% and various exercise 

prices K. Again the trinomial model only slightly 

outperforms the model by [10]. Table 3 shows option values 

written on an underlying with an initial price of 100, time to 

maturity of 0.25 years, volatility of 20% and a risk free rate 

of 10%. The prices by [11] and [12] are used as the “true” 

option values. As illustrated in figure 2, the prices by the 

trinomial algorithm do not significantly outperform the 

algorithm by [10] in pace of convergence or smoothness 

Table 2. American call option values from the trinomial algorithm, the algorithm by Costabile et al. 

TIME STEPS 
K=40 K=50 K=60 

Costabile Trinomial Costabile Trinomial Costabile Trinomial 

10 12.6824 12.6842 4.7097 4.6974 1.1279 1.1376 

20 12.9562 12.9721 4.8134 4.8172 1.1772 1.1834 

30 13.0756 13.0987 4.8619 4.8621 1.1951 1.1992 

40 13.1416 13.1678 4.8793 4.8885 1.1975 1.2077 

50 13.1986 13.2159 4.9053 4.9058 1.211 1.2131 

60 13.2347 13.2508 4.9175 4.9181 1.2152 1.2168 

70 13.2612 13.2747 4.9264 4.9268 1.2181 1.2194 

80 13.282 13.296 4.9334 4.9337 1.2203 1.2215 
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Table 3. American call option values from the trinomial algorithm, the algorithm by Costabile et al together with the prices of Zvan et al and Klaasen. 

TIME STEPS 
K=95 K=100 K=105 

Costabile Trinomial Costabile Trinomial Costabile Trinomial 

10 6.9386 6.9755 3.0378 3.0402 0.9169 0.9251 

20 7.1302 7.1527 3.1035 3.1076 0.9478 0.9508 

30 7.2144 7.2322 3.1343 3.135 0.9599 0.9615 

40 7.2626 7.2779 3.151 3.1517 0.9664 0.9675 

50 7.2951 7.3074 3.162 3.1627 0.9705 0.9712 

60 7.318 7.3289 3.1697 3.1704 0.9732 0.9738 

70 7.3347 7.3442 3.1754 3.1759 0.9753 0.9756 

80 7.3484 7.3566 3.1799 3.1803 0.9768 0.9771 

Zvan et al 7.521 3.2159 1.009 

Klaasen 7.466 3.224 0.9882 

 

Figure 2. American Asian option prices for the trinomial algorithm and the binomial method by Costabile et al compared to those of Zvan et al and Klaasen. 

5. Conclusions 

The binomial algorithm for Asian options by (10) is 

extended to a trinomial setting using the lattice proposed by 

(15). A subset of the true averages realized at each node are 

considered as the representative averages for use. The 

algorithm is tested for both European and American style 

Asian options. It is simple to use and very flexible. The results 

show it gives more accurate option values with an especially 

smoother convergence than the previous models. 
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