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Abstract: A class of nonsmooth composite minimization problems are considered in this paper. In practice, many problems in 

computational science, engineering and other enormous areas fall into this class of problems. Two obvious applications of this 

class of problems are least square problems with nonsmooth data and the problem of solving a system of nonsmooth equations. 

Because of its practical importance, this class of problem has received wide attention from the mathematical optimization 

community. In particular, Sampaio, Yuan and Sun has proposed a trust region method for this class of problems and also 

provided the convergence analysis to support their algorithm. Motivated partly by their work, in this paper a nonmonotone 

trust region algorithm for this class of nonsmooth composite minimization problems is presented. Different from most existing 

monotone line search and trust region methods, this method combines the nonmonotone technique to improve the efficiency of 

the trust region method. After a brief introduction of the class of problems in the first section, some fundamental concepts and 

properties which will be used in this paper are presented. Then, the new nonmonotone trust region algorithm for the class of 

problem is described followed by the global convergence analysis of the new algorithm. A simple application of this algorithm is 

discussed in the last part of this paper.  

Keywords: Nonmonotone, Trust Region Method, Composite, Nonsmooth Optimization 

 

1. Introduction 

In this paper, a class of nonsmooth composite 

minimization problems are considered. More formally, the 

problems are  

(P) min ( ( ))h f x ,              (1) 

where : n nf R R→  is a locally Lipschitzian function, and 

:
n

h R R→ is a continuously differentiable convex function 

bounded below. This class of problems arises frequently in 

computational science, engineering and other enormous areas. 

For instance, the problem of solving a system of nonsmooth 

equations and the least squares problem with nonsmooth data 

are all special cases of (P). 

The research on nonsmooth optimization was originated in 

the work of Clarke [2], and then there has been a number of 

research in the area [5, 6, 10, 12, 16]. In [5], Fletcher 

considered trust region methods for a class of composite 

nondifferentiable optimization problems 

min ( ) ( ) ( ( )),= +F x g x h f x  

where : ng R R→  and : n nf R R→ are continuously 

differentiable functions and :
n

h R R→ is a convex but 

nonsmooth function bounded below. Qi and Sun [10] 

extended the classical trust region algorithm to the 

nonsmooth case where the objective function is only locally 

Lipschitzian. The convergence result of this work extends the 

result of Powell for minimization of smooth functions, the 

result of Yuan for minimization of composite convex 

functions. However, many optimization problems in practice 

come down to the class of problems (P) and it has received 

extensive attention from the mathematical optimization 

community. In particular, a trust region method for (P) was 

proposed by Sampaio, Yuan and Sun in [12]. This work also 

provided the convergence analysis of the method and 
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extended the theory of trust region method for nonsmooth 

optimization given by Fletcher, Powell and Yuan. Motivated 

partly by this work [12], a nonmonotone trust region method 

for this class of problems (P) is proposed in this paper. 

To authors’ knowledge, most existing algorithms for 

nonsmooth optimization problems are monotone algorithms 

that enforce the sequence of objective function values decrease 

monotonically. However, some researches indicated that, 

enforcing monotonically decrease at each iteration can 

considerably slow down the convergence rate in the 

minimization process, especially in the presence of narrow 

curved valley. If the iteration is trapped near the narrow curved 

valley, forcing the value of objective function to decrease at 

each iteration would result in very short steps or zigzagging. In 

other words, monotonicity can cause serious loss of efficiency.  

Differing from the monotone methods, the nonmonotone 

methods relax the monotone limitation and allow the sequence 

of objective function values to increase occasionally. The idea 

of constructing nonmonotone method was originally developed 

by Chamberlain et al. [1] in the context of constrained 

optimization to overcome the so-called Maratos effect, which 

could lead to the rejection of superlinear convergent steps since 

these steps could cause an increase in both the objective 

function value and the constraint violation. In 1980s, Grippo et 

al. [6] first applied the nonmonotone line search technique for 

Newton's method. Numerical results in this work indicate that 

the nonmonotone line search technique may allow a 

considerable saving of computation both in the number of line 

search and function evaluation. Since then, various 

nonmonotone algorithms have been presented and proved to be 

efficient and competitive in practice and theory. In 1993, Deng 

et al. [4] extended the nonmonotone technique from line search 

methods to trust region methods. Then Toint [13, 14] 

introduced some variants of nonmonotone techniques 

combined with line search and trust region algorithms 

respectively.  

In this paper, the nonmonotone technique is combined with 

the trust region methods to solve the class of nonsmooth 

composite minimization problems (P). And it is proved that 

the algorithm is globally convergent. The remainder of this 

paper is organized as follows. In section 2, some fundamental 

concepts and properties which will be used in this paper are 

presented and the framework of trust region method is also 

introduced. In section 3, the new nonmonotone trust region 

algorithm for problem (P) is proposed. The global 

convergence of the new algorithm is established in section 4. 

Before the conclusion part, a simple application of the new 

algorithm is discussed in section 5. 

2. Preliminaries 

Throughout this paper, the notation ⋅  is used to denote 

the 2-norm for a vector and the induced 2-norm for a matrix. 

All functions are assumed to be locally Lipschitzian in this 

paper. The following are some basic definitions and 

properties that will be used in this paper and they can be 

found in [2]. 

Definition 1. Let : nf R R→ , and 
nx R∈ be such that 

( )f x is finite, the lower and upper Dini directional 

derivatives of f at x in the direction 
nv R∈ are given 

respectively as 

0
lim inf [ ( ) ( )] / ,−

↓
= + −d

t
f f x tv f x t  

0

limsup[ ( ) ( )] / .+

↓
= + −d

t

f f x tv f x t  

Definition 2. The Clarke directional derivative
0 ( , )f x v  of 

f at x in the direction 
nv R∈ is defined by 

0

0

( , ) lim sup[ ( ) ( )] / .
′→ ↓

′ ′= + −
x x t

f x v f x tv f x t  

The Clarke sub-differential ( )∂f x of f at x is defined by 

0( ) { | ( , ), }.∂ = ∈ ≤ ∀ ∈n T nf x R v f x v v Rξ ξ  

Definition 3. The function : nf R R→ is said to be lower 

semicontinuous at 0x , if  

0

0( ) lim inf ( ).
→

≤
x x

f x f x  

The function : nf R R→ is said to be upper 

semicontinuous at 0x , if  

0

0( ) lim sup ( ).
→

≥
x x

f x f x  

Lemma 1. Let : nf R R→  be locally Lipschitzian 

function and
nx R∈ . Then  

(1) 
0 ( , ) max{ | ( ), }.T nf x v d f x d Rξ ξ= ∈∂ ∀ ∈  

(2) ( )f x∂  is a compact set and ( ) .f x∂ ≠ ∅  

(3) 
0 ( , )f x ⋅ is positively homogeneous and sublinear. 

Definition 4. Let 1 2( , , ..., ) :T n m
mF f f f R R= → be 

continuously differential at
nx R∈ , then the Jacobi matrix 

( ) m nJ x R ×∈  is defined as 

1 1 1

1 2

2 2 2

1 2

1 2

...

...
( )

... ... ... ...

...

∂ ∂ ∂ 
 ∂ ∂ ∂
 
 ∂ ∂ ∂
 ∂ ∂ ∂=  
 
 ∂ ∂ ∂ 
 ∂ ∂ ∂ 

n

n

m m m

n

f f f

x x x

f f f

x x xJ x

f f f

x x x

 

( ) ( )TF x J x∇ = is said to be the gradient of F at x .  

Definition 5. Let 1 2( , , ..., ) :T n m
mF f f f R R= → , and 
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each , 1,2,...,if i m= be locally Lipschitzian continuous 

function, then the generalized Jacobi matrix ( ) m nJ x R ×∈  is 

defined as 

( ) { | ( ) lim ( )}.×

→
∂ = ∈ =

k

T m n
k

x x
F x Z R J x J x  

Before proposing the new nonmonotone trust region 

method in the next section, the framework of the trust region 

method will be briefly described first. A traditional trust 

region algorithm works as follows. At each iterate kx , a 

model function ( )km x  which is much easier to handle than 

the objective function, say ( )f x , is defined to approximate 

( )f x  within a suitable neighborhood of kx . The 

neighborhood is referred to as the trust region and is often 

represented by a ball centered at the current iterate kx  with 

radius k∆ . Then solve a trust region sub-problem, i.e., 

minimizing the model ( )km x within a trust region ball to 

obtain a trial step kd . If the trial step yields a good decrease 

in the objective function relative to the decrease in the model 

and the trust region radius k∆  is sufficiently small relative 

to the size of the model gradient, then the step is taken and 

k∆  is possibly increased. Otherwise the step is rejected and 

the trust region radius k∆  is decreased. Then solve the 

sub-problem within a smaller trust region to get a new trial 

step. The ratio of the objective function reduction to its 

model function reduction, i.e., 

( ) ( )

( ) ( )

− +=
− +

k k k
k

k k k k k

f x f x d
r

m x m x d
           (2) 

is computed to decide the acceptance of the trial iterate

k kx d+ . Due to the strong global convergent properties and 

robustness, the trust region methods now is an important 

ingredient of many standard optimization textbooks [8, 17]. 

3. The Nonmonotone Trust Region  

Algorithm 

In this section the new nonmonotone trust region algorithm 

for the class of nonsmooth composite minimizing problems (P) 

is described in detail.  

First, some parameters and constants need to be explained.

0 0 1 2 1, , , ,c c c η∆  and 2η  are given positive constants 

satisfying 0 2 1 1 21, 1,0 1c c c η η≤ < < < < < .  

At the k th iteration, given ,k kx H  and k∆ , approximate 

the objective function ( ( ))h f x  by the following model 

function: 

1
( ) : ( ( ) ) ,

2
= + +T T

k k k kQ d h f x Z d d H d       (3) 

where ( )∈∂k kZ f x  is the generalized Jacobian of f  at 

kx  and 
×∈ n n

kH R is a given symmetric matrix that carry 

certain second-order information of ( ( ))kh f x . 

Then solve the following sub-problem: 

(SP) 
1

min ( ) : ( ( ) ) ,
2≤∆

= + +
k

T T
k k k k

d
Q d h f x Z d d B d    (4) 

to gain a trial step. An exact solution of (4) is too expensive 

and unnecessary, the new algorithm will be satisfied with an 

inexact solution. Assume 
*

kd  is the exact solution of (4), 

then an inexact solution kd  satisfies 

*
0( ( )) ( ) [ ( ( )) ( )]− ≥ −k k k k k kh f x Q d c h f x Q d     (5) 

and 

≤ ∆k kd  

will be accepted by the new algorithm. If 0kd = , then stop. 

Otherwise, kr is computed to decide the acceptance of the 

trial iterate k kx d+ .  

As mentioned above, to improve the efficiency of the trust 

region methods, a nonmonotone technique is applied into the 

framework of the trust region methods. The ratio kr used in 

nonmonotone trust region methods is different from the 

classical one. The objective function value at current iterate in 

kr  is replaced by the reference function value whose 

definition follows [6]. 

For each k , let km  satisfy  

0 0=m and 10  min{ 1, }−≤ ≤ +k km m M , 

where 1k ≥ and 0M ≥ is a given integer parameter. Then 

define the reference function value as follows: 

( )
0

( ( )) max ( ( ))−≤ ≤
 =  

k

l k k j
j m

h f x h f x , 

where ( )  .− ≤ ≤kk m l k k  

The ratio kr  is defined as:  

( )

( )

( ( )) ( ( ))
.

(0) ( )

− +
=

−
l k k k

k
l k k k

h f x h f x d
r

Q Q d
       (6) 

Next, determine whether accept k kx d+ as the new iterate 

and update the trust region radius k∆ : 

2
1

,

, ,
+

+ >
= 


k k k
k

k

x d r c
x

x otherwise
 

1 2

1 2 1

2 0

, ,

, ,

min{ , }, .

+

∆ ≤
∆ = ∆ < ≤
 ∆ ∆

k k

k k k

k

r c

c r c

otherwise

η

η
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Denote  

( , ) : ( ( ) ) ( ( )),= + −T
kx d h f x Z d h f xφ       (7) 

( , ) : sup{ ( , ) : }.∆ = − ≤ ∆x x d dψ φ       (8) 

If for some 0, ( , ) 0xψ∆ > ∆ = , then x is said to be a critical 

point of (P), and the algorithm stop. 

Now, the nonmonotone trust region algorithm for the 

nonsmooth composite minimization problem is presented 

below. 

Algorithm NTR (The Nonmonotone Trust Region 

Algorithm) 

Step 0. (Initialization):  

Given 0 ,∈ nx R 0
×∈ n nH R , 00, 0> ∆ >ε , 00 1,< ≤c

2 10 1,< < <c c 1 20 1< < <η η and a nonnegative integer M. 

Set 00, 0= =k m  and compute 0( ( ))h f x . 

Step 1. (Model definition): 

Compute ( , )∆k kxψ as (8), if ( , )k kxψ ε∆ ≤ , set 
* = kx x  

and stop. Otherwise compute 
×∈ n n

kH R  and define the 

model function ( )kQ d  by (3). 

Step 2. (Step calculation):  

Determine a trial step kd by solving the trust region 

sub-problem (4) with the trust region radius k∆ . 

Step 3. (Acceptance of the trial step): 

Compute kr  as (6).  

If 2≤kr c , then 1+ =k kx x and 1 1+∆ = ∆k kη , update to 1+kH

and go to step 2.  

Otherwise, set 1+ = +k k kx x d , update to 1+kH and compute

1( ( ))+kh f x . If 2 1< ≤kc r c , 1+∆ = ∆k k . Otherwise,

1 2 0min{ , }+∆ = ∆ ∆k kη . 

Step 4. Set : 1k k= +  and go to step 1. 

Remark 1. It is easy to see that when 0M = , Algorithm 

NTR is reduced to the monotone trust region method. When

0M > , Algorithm NTR has the nonmonotone properties 

which can relax the monotone limitation and improve the 

efficiency of the trust region methods. 

4. The Global Convergence of Algorithm 

In this section, the global convergence results of Algorithm 

NTR given in the previous section is established. This analysis 

follows the convergence analysis framework of the trust 

region methods ([3, 8, 17]). But it is for nonsmooth composite 

programming problem and is based on the nonmonotone 

technique. 

Let = �F h f , some standard assumptions which can be 

found in [10] are given as follows.  

Assumption 1. kH  is uniformly bounded, i.e., there exists 

a constant 0κ > such that, for all k , 

≤kH κ  

Assumption 2. The level set  

0 0( ) { | ( ) ( )}= ∈ ≤nL x x R F x F x  

is bounded and compact, where 0x is some starting point in

nR . Let 
nD R⊂ be a bounded open convex set containing 

0( )L x and 0∆ be the diameter of D . 

Before proving the main convergence theorem, some 

relevant propositions and lemmas are given. 

Proposition 1. Let ,F φ  be as above, then  

(1) For all , ( ,0) 0∈ =nx R xφ and ( , )⋅xφ  is lower 

semicontinuous. 

(2) There exists 0∆ > such that for all ,≤ ∆d  ( , )− ⋅ dφ
is lower semicontinuous. 

(3) ( , ) ( , )≤x d x dφ α αφ , 0,0 1.∀ ∈ ≤ ≤x L α  

(4) For any convergent subsequence { : }∈ ⊆kx k K J , if 

0→kd , then 

( )( ) ( ) ( , ) .+ − ≤ +k k k k kf x d f x x d o dφ       (9) 

Where {0,1,2,3,...}=J . 

Lemma 2. Let = �F h f . For all ∆ ≥ ∆k ,

0 ( , )
( ) ( ) ( , ) min , ,

2

 ∆ − ≥ ∆ ∆ ∆ ∆  

k
k k k k k

k

c x
F x Q d x

H

ψψ  

where the second term in the min notation is understood as ∞
if 0=kH . 

Proposition 1 and Lemma 2 have been proved true in [10]. 

Lemma 3. For all ∆ ≥ ∆k , 

0
( )

( , )
( ) ( ) ( , ) min , ,

2

k
l k k k k k

k

c x
F x Q d x

H

ψψ
 ∆ − ≥ ∆ ∆ ∆ ∆  

where the second term in the min notation is understood as ∞
if 0kH = . 

This lemma can be deduced directly from the Lemma 3.2 in 

[10]. 

Theorem 1. Under assumption 1-2, at least one 

accumulation point x of sequence { }kx which generated by 

Algorithm NTR is a critical point of F . 

Proof. Suppose to the contrary that any accumulation point 

x of sequence{ }kx  is not the critical point of F . That is to 

say for any 0∆ > , there exists positive number 0 1, 0ε ε >  and

0N > , such that for all k N> , 1,kx x ε− ≤  

0( , )∆ ≥kxψ ε .                 (10) 

In fact, if for positive number 1 0= >n nε , some 1 0∆ >
and any 0N > , k N∃ > satisfying { }′ ∈k kx x  and 

1( , )′ ∆ <k nxψ ε . Then it is deduced that 

1lim inf ( , ) 0.
→∞

′ ∆ ≤k
k

xψ  
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On the other hand, since 0( )L x  is a compact set, then there 

is a convergent subsequence { }
ti

x′ of { }kx such that
ti

x x′ ′→ , 

i.e., x′ is an accumulation point of{ }kx . From assumption, 

x′ is not a critical point of{ }kx , hence 1( , ) 0xψ ′ ∆ > , and  

1 1lim inf ( , ) ( , ),
→∞

′ ′∆ < ∆k
k

x xψ ψ  

which contradicts the lower semi-continuity of 1( , )ψ ⋅ ∆ at x′ .  

According to Algorithm NTR, the sequence{ }kx  generated 

by Algorithm NTR has at least one subsequence satisfying one 

of the following two cases. 

Case (a) There exists a subsequence 1{ : }kr k K∈ , such that 

2kr c≤ and
1,
lim 0

∈ →∞
∆ =k

k K k
. 

Case (b) There exists a subsequence 2{ : }kr k K∈ and a 

positive integer 0K , such that for any 0k K> , 2k K∈ , 2kr c> . 

Now, let x  be an accumulation point of such a 

subsequence and an infinite subsequence 3{ : }kx k K∈  

converges to x , but x is not a critical point of F . 

First, consider Case (a). 

Since
1,
lim 0

∈ →∞
∆ =k

k K k
, then  

1,
lim 0

∈ →∞
=k

k K k
d . 

From Lemma 3 and Assumption 1, for any sufficiently large

3 1,k K K k N∈ ⊆ > ,  

( ) ( )

( ) ( )

+ −
−

k k k k

k k k

F x d Q d

F x Q d
 

1
( ) ( ) ( , )

2

( ) ( )

+ − − −
=

−

T
k k k k k k k k

k k k

F x d F x x d d H d

F x Q d

φ
 

( )
0 0

0
0 0

1

2

( , )
( , ) min ,

2

−
≤

 ∆ ∆ ∆ ∆ ∆  

T
k k k k

k
k k

k

o d d H d

c x
x

H

ψψ
 

( ) ( )
0 0

0 0
0 0

.

2 2

≤ ≤
∆

∆ ∆

k k

k k

o d o d

c c
dε ε

 

Let k be sufficiently large, it can be deduced that 

2

( ) ( )
1

( ) ( )

+ − < −
−

k k k k

k k k

F x d Q d
c

F x Q d
. 

It follows that 

( )2 21 ( ) ( ) ( )− > + −k k k k kc F x F x d c Q d  

Notice that 20 1< <c  and ( )( ) ( )>l k kF x F x , then  

( )2 ( ) 21 ( ) ( ) ( )− > + −l k k k k kc F x F x d c Q d . 

Thus,  

( )
2

( )

( ) ( )

( ) ( )

− +
>

−
l k k k

l k k k

F x F x d
c

F x Q d
. 

This is to say, 

2>kr c  

for 3 1k K K∈ ⊆ large enough, which leads to a contradiction 

according to the assumption of Case (a). 

Now, consider Case (b). Since 1  1k km m+ ≤ + , it follows 

that  

1

( 1) 1 1
0 0 1

( ) max [ ( )] max [ ( )]
+

+ + − + −≤ ≤ ≤ ≤ +
= ≤

k k

l k k j k j
j m j m

F x F x F x  

( ) 1 ( )max{ ( ), ( )} ( ).+= =l k k l kF x F x F x  

Since the function F is bounded below, then the sequence 

( ){ ( )}l kF x converges. 

From the assumption of Case (b), for any 0>k K ,

3 2∈ ⊆k K K , it follows that 2>kr c .  

Let 3min{ | }= ∆ ∈k k Kδ , 0 2 0
0

0 0

min ,
2

c c εη ε δ
κ

  =  ∆ ∆  
. By 

Lemma 2-3 and Assumption 1, for all 3∈k K , 

0 2 0
( ) 1 0

0 0

( , )
( ) ( ) ( , ) min , .

2

k
l k k k k

c c x
F x F x x

ψψ
κ+

 ∆ − ≥ ∆ ∆ ∆ ∆  

It follows from (10) that for all large 3∈k K , 

0max{ , }>k N K , 

0 2 0
1 ( ) 0

0 0

( , )
( ) ( ) ( , ) min ,

2
+

 ∆≤ − ∆ ∆ ∆ ∆ 

k
k l k k k

c c x
F x F x x

ψψ
κ

 

0 2 0
( ) 0

0 0

( ) min ,
2

 ≤ − ∆ ∆ ∆ 
l k k

c c
F x

εε
κ

 

0 2 0
( ) 0

0 0

( ) min ,
2

 ≤ −  ∆ ∆ 
l k

c c
F x

εε δ
κ

 

( )( ) .≤ −l kF x η                 (11) 

Thus,  

( ) ( ( ) 1)( ) ( ) .−≤ −l k l l kF x F x η          (12) 

Since the function F is bounded below and the sequence 

( ){ ( )}l kF x  is convergent, it follows from (12) that 0η ≤ , 
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which contradicts to the fact that 0η > . 

Combing the Case (a) and Case (b), the theorem holds. 

5. Applications 

The above algorithm and theory have two obvious 

applications: the least square problems with nonsmooth data 

and nonsmooth equations.  

In this section, consider a least square problem 

21
min ( )

2∈
−

nx R
F x b .               (13) 

Take 
2

( ) 1 2h ⋅ = ⋅ and ( )( )f F b⋅ = ⋅ − , where 

( ) 1 2( ( ), ( ),... ( ))
T

mF x f x f x f x=  and 1 2( , ,... )T
mb b b b= are 

not necessarily smooth. Then (13) is a special case of problem 

(P) since h  is a continuously differentiable convex function 

bounded below, and ( )( )f F b⋅ = ⋅ − is locally Lipschitzian. 

The new nonmonotone trust region method to solve (13) can 

be applied. The algorithm framework is as follows: 

Algorithm 

Step 0. (Initialization):  

Given 0 ,nx R∈ 0
n nH R ×∈ , 00, 0ε > ∆ > , 00 1,c< ≤

2 10 1,c c< < < 1 20 1η η< < < and a nonnegative integer M. 

Set 00, 0k m= =  and compute
2

0

1
( )

2
F x b− . 

Step 1. (Model definition): 

Compute ( , )k kxψ ∆ as (8), where  

2 21 1
( , ) : ( ) ( )

2 2
= − + − −T

k k k kx d F x b Z d F x bφ  

If ( , )k kxψ ε∆ ≤ , set 
*

kx x=  and stop. Otherwise 

compute 
n n

kH R ×∈  and define the model function 

21 1
( ) ( )

2 2
= − + +T T

k k k kQ d F x b Z d d H d  

Step 2. (Step calculation):  

Determine a trial step kd by solving the trust region 

sub-problem (4) with the trust region radius k∆ . 

Step 3. (Acceptance of the trial step): 

Compute  

2 2

( )

( )

( ) ( )

(0) ( )

− − + −
=

−
l k k k

k
l k k k

F x b F x d b
r

Q Q d

 

If 2≤kr c , then 1+ =k kx x and 1 1+∆ = ∆k kη , update kH

and go to step 2. Otherwise, set 1+ = +k k kx x d , update kH and 

compute 1( ( ))+kh f x . If 2 1< ≤kc r c , 1+∆ = ∆k k . If 1>kr c ,

1 2 0min{ , }+∆ = ∆ ∆k kη . 

Step 4. Set : 1k k= +  and go to step 1. 

6. Conclusion 

In this paper, a new nonmonotone trust region methods is 

presented for the class of nonsmooth composite minimization 

problems (P). The nonmonotone technique is combined with 

the trust region method to improve the algorithm’s efficiency. 

Under the mild conditions, the global convergence property of 

the new algorithm is proved. For the future research, this idea 

can be extended to other optimization problems, such as 

constrained optimization. 
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