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Abstract: This article presents the new exact traveling wave solutions of fourth order (1+1)-dimensional Boussinesq 

equation. We proposed a new exponential expansion method and apply to undertake this study. The analytical solutions are 

defined by various types of mathematical functions. This study further shows some solitary and periodic waves graphically. 

This paper also shows that the novel exponential expansion method is easily applicable and powerful mathematical tool in the 

symbolic computational approach in the field of mathematical physics and engineering. The exact solutions of this equation 

play a vital role for describing different types of wave propagation in any varied natural instances, especially in water wave 

dynamics. 
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1. Introduction 

The nonlinear partial differential equations (NPDEs) are 

broadly used as models for describing various types of 

physical mechanisms of natural phenomena in the field of 

applied sciences and engineering, especially in plasma 

physics, elastic media, optical fibers, fluid dynamics, 

quantum mechanics, chimerical physics, biotechnology, 

signal processing, solid state physics, shallow water wave 

theory etc. The solitary and periodic wave solutions of these 

equations have importance physical significance to observe 

the oscillatory behaviors in these relevant fields. In addition, 

there are several types of mathematical method have been 

used to search the exact traveling wave solutions of NPDEs, 

such as the (G'/G)-expansion method [1, 2], new approach of 

(G'/G)-expansion method [3], novel (G'/G)-expansion 

method [4], new approach of generalized (G'/G)-expansion 

method [5], the tanh method [6-9], the Jacobi elliptic 

function method [10, 11], the homogeneous balance method 

[12-14], the Hirota’s method [15], the Homotpy perturbation 

technique [16], the improved F-expansion method [17], the 

sine-cosine method [18], the modified simple equation 

method [19], the Exp-function method [20, 21], the exp (-Φ 

(ξ))-expansion method [22-26] and others.  

The fourth order (1+1)-dimensional Boussinesq equation is 

an important class of NPDEs, which was first introduced by 

Boussinesq to examine the propagation of long waves in 

shallow water under the gravity propagating in positive and 

negative directions [27]. This equation also appeared as a 

model equation to describe the propagation of many other 

physical phenomena, such as iron sound wave in plasma, 

nonlinear lattice waves and vibrations in a nonlinear string. It 

was also applied to the study of the percolation of water in 

porous subsurface strata. There is an amount of literature, 

where the Boussinesq equation is well studied. For instance, 

Yildrim and Mohud-Din have been applied the He’s semi-

inverse method to obtain the soliton solution of good 

Boussinesq equation [28]. Neyrame el al. have been examined 

the exact traveling wave solutions of the Boussinesq equation 

using the (G'/G)-expansion method and the exact traveling 

wave solutions are expressed by the hyperbolic, trigonometric 

and rational functions with the help of auxiliary differential 

equation �� � ��� � �� � 0, �, � ∈ � [29]. Alam et al. have 
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been proposed a new method namely novel (G'/G)-expansion 

method and its applied to find the more explicit solutions of 

this equation [4]. Many other well known methods, such as the 

inverse scattering transform method, the bilinear formalism, 

Hirota’s method, tanh-coth method and Backlund 

transformation method have been used to handle completely 

integrable Boussinesq equation. Recently Akbar and Ali also 

studied the solitary wave solutions of the fourth order 

Boussinesq equation through the exp (-Φ (ξ))-expansion 

method [24]. They are provided only few solutions to this 

equation according to the nonlinear ordinary differential 

equation ��(�) � ���( − �(�)) � � ���(�(�)) � �. In this 

regards, we are extended the exp (-Φ (ξ))-expansion method 

for searching more valuable explicit form solutions to NPDEs. 

The extended method is called an novel exponential expansion 

method and provides some new explicit and exact traveling 

wave solutions to the nonlinear evolution equations with help 

of subsidiary nonlinear ordinary differential equations 

��(�) � �� � �(���( − �(�)))� � 0  and �′(�) +� ���(�(�)) + � ���( − �(�)) = 0. The aim of this article 

is to discover for new study linking to the novel exponential 

expansion method for solving the famous nonlinear fourth 

order Boussinesq equation to demonstrate the correctness and 

truthfulness of the method. The exp (-Φ (ξ))-expansion method 

is only special case of the novel exponential expansion method. 

It is shown that this method provides some new explicit 

solutions. The exact traveling wave solutions are obtained 

according to the variation of the additional unknown 

parameters that are involved in explicit solutions. The exact 

solutions have its great importance to reveal the internal 

mechanism of the physical phenomena. Algebraic 

manipulation of the technique with the help of Maple is much 

easier than the other methods. 

The remainder of the paper is organized as follows: In Section 

2, we give the brief description of the proposed novel 

exponential expansion method. In Section 3, we apply this 

method to investigate the explicit and solitary wave solutions of 

the Boussinesq equation for describing various types of wave 

propagation in any varied physical instances. The physical 

explanations of the obtaining solutions and the advantages of the 

new exponential expansion method are presented in section 4 

and 5 respectively. Conclusions are given in the last section. 

2. Description of the Proposed Novel 

Exponential Expansion Method 

This section presents the brief descriptions of the new 

exponential expansion method. 

Let us consider the nonlinear PDE as: 

�(�, �� , �� , ���, ��� , ���, … ) = 0                       (1) 

where, �  is a function of �, �� , ��, ���, ��� , ���, …  and the 

subscripts denote the partial derivatives of �(�, �)  with 

respect to x and t.  

Let �(�, �) = �(�), � = � ± ��,  where V is an arbitrary 

constant, then the eq. (1) reduces to a nonlinear ordinary 

differential equation (ODE) for� = �(�): 
�(�, �′, �″, �‴, ⋯ ) = 0                              (2) 

where, � is a function of �, ��, ��, � , ⋯ and its derivatives 

point out the ordinary derivatives with respect to �. 

Let us consider the traveling wave solution of eq. (4) as: 

�(�) = ∑ "#$���$−�(�)%%#,&#'( "& ≠ 0              (3) 

where the coefficients "#(0 ≤ + ≤ ,)  are constants to be 

evaluated and � = �(�)  satisfies the first order nonlinear 

ordinary differential equation: 

�′(�) = ���( − �(�)) + � ���(�(�)) + �           (4) 

where � and � are arbitrary constants.  

The value of the positive integer , appeared in equation 

(3) can be determined by balancing the higher order 

derivative with the nonlinear terms of the highest order 

appeared in equation (2).  

By substituting (3) into (2) and using (4) rapidly, we obtain 

a system of algebraic equations for "#(0 ≤ + ≤ ,), �, �, � . 

With the help of symbolic computation, such as Maple, we 

can evaluate the obtaining system and find out the 

values"#(0 ≤ + ≤ ,), �, �, �. It is notable that equation (4) 

has the following five types of general solutions [22-26]: 

�(�) = -. /0√2 �3456(.8√2(9:9;)<0=�> ? , � ≠ 0, @ = �� − 4� > 0                                    (5) 

�(�) = -. /√02 �346(.8√02(9:9;)<0=�> ? , � ≠ 0,@ = �� − 4� > 0                                    (6) 

�(�) = − -. / =C�D(=(9:9;))0E? , � = 0, � ≠ 0, @ = �� − 4� > 0                                   (7) 

�(�) = -. /− �(=(9:9;):�)=F(9:9;) ? , � ≠ 0, � ≠ 0, @ = �� − 4� = 0                                                 (8) 

�(�) = -.(� + �() , � = 0, � = 0                                                                       (9) 

where �( is the integrating constant. 

Thus the multiple explicit solutions of NPDE (1) are 

obtained by using of the equations (3) and (5)-(9).  

Again, suppose eq. (2) has solution of the form (3) and � = �(�) satisfies another first order nonlinear ODE: 

�′(�) + �� + �(���( − �(�)))� = 0, �, � ∈ ℜ           (10) 

By substituting (3) into (2) and using (10) repeatedly, we 

obtain a system of algebraic equations for "#(0 ≤ + ≤
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,), �, �, �. With the help of symbolic computation, such as 

Maple, we can evaluate the resulting system and find out the 

values"#(0 ≤ + ≤ ,), �, �, �. It is notable that equation (10) 

has the following general solutions: 

�(�) = − -. G−H=> IJI ℎ L√�(� + �()MN,� > 0, � > 0 (11) 

�(�) = − -. GH0=> J�IL√−�(� + �()MN,� < 0, � > 0 (12) 

�(�) = − -. GH =0> J�I ℎ L√�(� + �()MN,� > 0, � < 0 (13) 

�(�) = − -. GH0=> IJIL√−�(� + �()MN,� < 0, � > 0 (14) 

�(�) = − -. / E±√>(9:9;)?,� = 0, � > 0             (15) 

�(�) = − -. / #±√>(9:9;)?,� = 0, � < 0             (16) 

where �( is the integrating constant. 

Thus the new multiple exact solutions of NPDE (1) are 

obtained by combining the equations (3) and (11)-(16).  

Finally, suppose equation (2) has solution of the form (3) 

and � = �(�) satisfies another first order nonlinear ODE: 

�′(�) + � ���(�(�)) + � ���( − �(�)) = 0, �, � ∈ ℜ  (17) 

By substituting (3) into (2) and using (17) repeatedly, we 

obtain a system of algebraic equations for "#(0 ≤ + ≤,), �, �, �. With the help of symbolic computation, such as 

Maple, we can calculate the resulting system and find out the 

values"#(0 ≤ + ≤ ,), �, �, �. It is notable that equation (17) 

has the following general solutions: 

�(�) = − -. GH=> �P.L���(� + �()MN,�� > 0     (18) 

�(�) = − -. G−H=> IQ�L���(� + �()MN,�� > 0   (19) 

�(�) = − -. GH =0> �P.ℎL�−��(� + �()MN,�� < 0   (20) 

�(�) = − -. GH =0> IQ�ℎL�−��(� + �()MN,�� < 0  (21) 

�(�) = − -. /− E>(9:9;)?,� = 0, � > 0       (22) 

where �( is the integrating constant and �� > 0or �� < 0are 

dependent on sign of �. 

Finally, we obtain the new multiple explicit solutions of 

NPDE (1) by combining the equations (3) and (18)-(22). 

3. Applications of the Method 

This section presents the application of the proposed new 

exponential expansion method to find the more explicit and 

exact traveling wave solutions of the fourth order Boussinesq 

equation. 

The fourth order (1+1)-dimensional Boussinesq equation 

is given by 

��� − ��� − ����� − 3(��)�� = 0                      (23) 

Here, �(�, �) represents the evolution of free surface of 

the fluid and the subscripts denotes partial derivatives. 

Boussinesq was first introduced the equation (23) as a 

model equation to investigate the propagation of long 

waves in shallow water under the gravity propagating in 

both directions. This equation also helpful to observe the 

wave propagation of water in porous subsurface strata, the 

vibration of the string, the nonlinear lattice waves, the iron 

sound waves in plasma or at any varied instances where 

the model equation (23) is applicable. Equation (23) 

possesses solitary waves, take out from traveling wave 

solutions and Boussinesq was first who gave s scientific 

explanation of their existence. In order to get the new 

traveling wave solutions, if we introduce the wave 

variable transformation �(�, �) = �(S), S = � − ��,  where 

V is the speed of traveling, then the equation (23) reduces 

to a nonlinear ODE as: 

(�� − 1) UFVUWF − UXVUWX − 3 UFUWF (��) = 0                 (24) 

Integrating (11) twice with regard to S, we get: 

(�� − 1)� − UFVUWF − 3�� + Y = 0                       (25) 

where Y is an integral constant.  

It is easily shown that, the pole of equation (25) is, = 2. 

According to the novel exponential expansion method, the 

solution of the equation (25) can be written as: 

�(�) = "( + "E�0[(W) + "�(�0[(W))�                (26) 

where �(S) satisfies the nonlinear ODEs (4), (10) and (17).  

Akbar and Ali have been investigated the explicit and 

exact solitary wave solutions according to the first order 

nonlinear ODE (4) [24]. So, we have no need to analyze 

the solutions according to the old exp (-Φ (ξ))-expansion 

method. We are only analyzed the exact solutions of (25) 

according to the auxiliary nonlinear ODEs (10) and (17). 

Now, substituting (26) into (25) and using (10) rapidly, 

we obtain a system of algebraic equation by equating the 

coefficients of (�0[(W))# , (+ = 0,1,2,3,5)  to zero as 

follows: 

2 2
0 0 0

2
1 2 0 1 1

2 2
1 2 2 0 2 2

2
1 1 2 2 2

3 0,

6 0,

3 4 6 0,

2 6 0, 6 3 0.

V A A A C

A V A A A A

A V A A A A A

A A A A A

λ

λ

µ µ

− − + =

− + − − = 


− + − − − = 


− − = − − = 

          (27) 

Solving the system of algebraic equation (27), we have 
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 ]Y = − EE��^ + E_�� + ^̀ �� − EE� , � = �, "( = E_�� − �̀ � − E_ , "E = 0, "� = −2�a                           (28) 

where �,� and � are arbitrary constants. 

By using the equations (11)-(16), (26) and (28), the Boussinesq equation (23) has the following new explicit solutions: 

�E(�, �) = E_�� − �̀ � − E_− 2� IJIℎ�L√�(� − �� + �()M, � > 0, � > 0                                   (29) 

��(�, �) = E_�� − �̀ � − E_− 2� J�Iℎ�L√�(� − �� + �()M, � > 0, � < 0                                       (30) 

�`(�, �) = E_�� − �̀ � − E_− 2� IJI�L√−�(� − �� + �()M,� < 0, � > 0                                      (31) 

�^(�, �) = E_�� − �̀ � − E_− 2� J�I�L√−�(� − �� + �()M, � < 0, � > 0                                    (32) 

�8(�, �) = E_�� − E_ ∓ 2� / E�0c�:9;?�, � = 0, � > 0                                                       (33) 

Now, substituting (26) into (25) and using (17) rapidly, we obtain a system of algebraic equation by equating the coefficients 

of (�0[(W))#, (+ = 0,1,2,3,5,6) to zero as follows:  

2 2
2 0 0 0

2 2
0 1 1 1 1

2 2 2 2
0 2 1 2 2 2 2

2
2 2 1 2 1

6 3 0,

6 2 0,

6 3 2 6 0,

2 3 0, 6 0, 2 0.

A C V A A A

A A V A A A

A A A A A A V A

A A A A A

µλ

µ

λ µ

µλ µλ

− + + − − =

− + − − = 


− − − + − + = 


− − = − = − = 

                                                             (34) 

Solving the system of algebraic equation (34), we have: 

eY = −2���� + E_�� − EE��^ − EE�+ È �^ + 3�^, � = �, "( = − E_− È �� − �� + E_��� = �, � = �, "E = 0, "� = − �̀�� f                       (35) 

where �,� and � are arbitrary constants. 

Using the equations (18)-(22), (26) and (35), the fourth order Boussinesq equation (23) gives the following new explicit 

solutions: 

�_(�, �) = − E_− È �� − �� + E_�� − �̀ �� �P.�L���(� − �� + �()M �� > 0                                    (36) 

�g = − E_− È �� − �� + E_�� − �̀ �� IQ��L���(� − �� + �()M �� > 0                                        (37) 

�h(�, �) = − E_− È �� − �� + E_�� − �̀ �� �P.ℎ�L�−��(� − �� + �()M �� < 0                                (38) 

�i(�, �) = − E_− È �� − �� + E_�� − �̀ �� IQ�ℎ�L�−��(� − �� + �()M �� < 0                               (39) 

The explicit solutions obtained in this article are 

encouraging, applicable and could be useful to describe the 

long wave translation on the surface of a fluid layer under the 

action of gravity, the propagation of iron sound waves in 

plasma, the propagation of nonlinear lattice waves and the 

propagation of vibrations in a nonlinear string. The solutions 

are also applied to study linking to the percolation of water in 

porous subsurface strata. 

4. Physical Explanation 

This section presents the physical importance of the fourth 

order Boussinesq equation and physical significances of the 

above determined solutions.  

The fourth order Boussinesq equation that contains 

nonlinear term and dispersive terms, describes the various 

types of wave translations in shallow water under the gravity 

propagating in both directions, plasma physics, nonlinear 

lattice and nonlinear string. This equation incorporates two 

competing effects: (i) the nonlinear term represented by (��)�� that describe the translations of wave and (ii) the 

linear dispersion term represented by �����  that describes the 

spreads it out. If both dispersion and nonlinearity are present, 

solitary waves can be persistent. Hence it is notable to point 

out that the delicate balance between the nonlinearity effect 

of (��)��  and the dissipative effect of �����  to the 

Boussinesq equation give rise to solitary waves. A solitary 

wave is a wave which propagates without any temporal 
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evolution in shape or size when viewed in the reference 

frame moving with the group velocity of the wave. The 

envelope of the wave has one global peak and decays far 

away from the peak. Solitary waves arise in many literatures, 

including the elevation of the surface of water, the intensity 

of light in optical fibers, the particle wave propagation in 

field theory, the elevation of surface in shallow water wave 

etc. A soliton is also a nonlinear solitary wave with the 

additional property that the wave retains its permanent 

structure, even after interacting with another soliton. For 

example, two solitons propagating in opposite directions 

effectively pass through each other without breaking. 

Sometimes nonlinearity without dispersion prevents the 

formation of solitary waves, because the pulse energy is 

frequently pumped into higher frequency modes. Similarly to 

dispersion, dissipation can also give rise to solitary waves 

when combined with nonlinearity. There are various types of 

solitary and periodic wave solutions that appeared from the 

analytical solutions to the nonlinear evolution equation by 

choosing appropriate values of the physical parameters. In 

this article, the solitary wave and periodic wave solutions 

originated from the explicit solutions to the Boussinesq 

equation for some special values of additional free 

parameters as follows:  

Solution �E(�, �)  corresponding to the fixed values � = 1 ,� = 0.5 ,� = 0.5 , and �( = 0.5  represent the single 

soliton type solitary wave solution in negative direction, 

which is shown in Figure 1. Solution ��(�, �) represent the 

non-topological bell nature solitary wave in negative 

direction with fixed parameters� = 1 ,� = 0.1 ,� = 1 , and �( = 0.5, which is shown in Figure 2. Solution �`(�, �) with 

fixed parameters� = 1 , � = −0.1 ,� = 0.1  and �( = 0.5  is 

presented periodic traveling wave solution, which is shown 

in Figure 3. Solution �^(�, �)  with fixed parameters � =1,� = −1,� = 1, and �( = 0.5 is represented the soliton type 

periodic traveling wave solution, which is shown in Figure 4. 

Solution �8(�, �)  is formed the solitary wave solutions of 

singular soliton type corresponding to the fixed values� =0.5,� = 0,� = 0.5 and �( = 0, which is shown in Figure 5. 

Solution �_(�, �) with fixed parameters � = 1, � = 1,� = 1 

and �( = 0.5  is formed the soliton type periodic traveling 

wave solution in negative direction, which is shown in Figure 

6. Solution �g(�, �) with fixed parameters� = 1,� = 0.5,� =0.5 and �( = 0 is formed the singular periodic traveling wave 

solution, which is shown in Figure 7. Solution �h(�, �)  is 

presented the solitary wave solutions of singular soliton type 

corresponding to � = 0.5 , � = 1 , � = −1  and �( = 0.5 , 

which is shown in Figure 8. Finally, solution �i(�, �) 
represent the solitary wave solution corresponding to � = 0.1, � = −1.5, � = 1.5 and �( = 0, which is shown in 

Figure 9.  
 

 

Figure 1. Solitary wave solution of single soliton nature in negative direction (a) 3D plot of solution �E(�, �) and (b) 2D plot solution �E(�, �) for � = 1, , � =0.5,� = 0.5, and �( = 0.5, � = 0,� = 2 and � = 4. 

 

Figure 2. Solitary wave solution of non-topological bell nature in negative direction (a) 3D plot of solution ��(�, �) and (b) 2D plot solution ��(�, �) for � = 1,� = 0.1,� = 1, and �( = 0.5, � = 0,� = 2 and � = 4. 
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Figure 3. Periodic wave solution in positive direction (a) 3D plot of solution �`(�, �) and (b) 2D plot solution �`(�, �) for	� = 1,� = −0.1,� = 0.1 and �( = 0.5, � = 0,� = 2 and � = 4. 

 

Figure 4. Periodic wave solution of soliton nature in positive direction (a) 3D plot of solution �^(�, �) and (b) 2D plot solution �^(�, �) for � = 1,� = −1,� =1, and �( = 0.5, � = 0,� = 2 and � = 4. 

 

Figure 5. Solitary wave of singular soliton nature in negative direction (a) 3D plot of solution �8(�, �) and (b) 2D plot solution �8(�, �) for values � =0.5,� = 0,� = 0.5 and �( = 0, � = 0,� = 2 and � = 4. 
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Figure 6. Periodic wave solution of soliton nature in negative direction (a) 3D plot of solution �_(�, �) and (b) 2D plot solution �_(�, �) for � = 1, � = 1,� =1 and �( = 0.5, � = 0,� = 2 and � = 4. 

 

Figure 7. Singular periodic wave solution (a) 3D plot of solution �g(�, �) and (b) 2D plot solution �g(�, �) for � = 1,� = 0.5,� = 0.5 and �( = 0, � = 0,� =2 and � = 4. 

 

Figure 8. Solitary wave solution of cupson nature (a) 3D plot of solution �h(�, �) and (b) 2D plot solution �h(�, �) for � = 0.5,� = 1,� = −1 and �( = 0.5, � = 0,� = 2 and � = 4. 
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Figure 9. Solitary wave solution (a) 3D plot of solution �i(�, �)and (b) 2D plot solution �i(�, �) for � = 0.1, � = −1.5, � = 1.5 and �( = 0, � = 0,� = 2 and � = 4. 

5. Discussion 

The novel exponential expansion method has been given 

more general and huge amount of new explicit solutions with 

few additional free parameters. The explicit solutions 

represented several types of solitary and periodic wave 

solutions according to the variation of the unknown 

parameters. The wave solutions have its great importance to 

interpret the inner mechanism of the natural physical 

phenomena. The solitary and periodic wave solutions are also 

useful for verifying the accuracy and stability of popular 

numerical schemes such as finite element and finite 

difference methods. It is worth declaring that some of our 

obtained solutions are in good agreement with already 

published results. For instances, the solution �(�, �) =−2 / kFkF(�0c�):kl?� + `=� + P(, �� − 4� = 0 of the Boussinesq 

equation found in [29] corresponding to fixed parametric 

values � = 2, � = 1, P( = −3, � = 1, Y� = 1 is equal to our 

obtained solution �8(�, �) = E_�� − E_−2� / E�0c�:9;?� corresponding to the values � = 1,  � = 1, YE = �( . The other obtained traveling waves solutions 

include in this paper are new and have not been found in 

previous literature [4, 29]. Therefore, the novel exponential 

expansion method provides some new exact solutions which 

are not found in other literature. This is the main advantage 

of this method. This method not only re-derives all known 

solutions in a systemic way but also obtains several entirely 

new and more explicit solutions to the NPDEs. Algebraic 

manipulation of the method with the help of Maple is much 

easier than the other existing method. We have also presented 

some shapes of solitary waves constructed by choosing 

suitable values of the involved free parameters to visualize 

the underlying mechanism to the original physical 

phenomena. Using mathematical software MATHLAB, three 

and two dimensional plots of the determined solutions have 

been shown in Figures1 to 9.  

6. Conclusions 

In this paper, we have proposed a new exponential 

expansion method for solving NPDEs and successfully 

applied to obtain more explicit and exact traveling wave 

solutions of the fourth order Boussinesq equation. The results 

revealed that some of the analytical solutions have obtained 

in the new forms. We have also formulated solitary wave 

solutions in graphically from the explicit solutions by taking 

appropriate parametric values of the additional free 

parameters. The paper has shown that the exponential 

expansion method is sufficient to search for more new exact 

solutions of NPDEs in mathematical physics and 

engineering. The obtained solutions can be utilized to further 

analyze by physicists or engineers on varied instances. It can 

be concluded that this method can be implemented to obtain 

useful solutions for other NPDEs. 
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