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Abstract: We study the problem of computing the weighted analytic center for linear matrix inequality constraints. In this 

paper, we apply conjugate gradient (CG) methods to find the weighted analytic center. CG methods have low memory 

requirements and strong local and global convergence properties. The methods considered are the classical methods by 

Hestenes-Stiefel (HS), Fletcher and Reeves (FR), Polak and Ribiere (PR) and a relatively new method by Rivaie, Abashar, 

Mustafa and Ismail (RAMI). We compare performance of each method on random test problems by observing the number of 

iterations and time required by the method to find the weighted analytic center for each test problem. We use Newton’s method 

exact line search and Quadratic Interpolation inexact line search. Our numerical results show that PR is the best method, followed 

by HS, then RAMI, and then FR. However, PR and HS performed about the same with exact line search. The results also indicate 

that both line searches work well, but exact line search handles weights better than the inexact line search when some weight is 

relatively much larger than the other weights. We also find from our results that with Quadratic interpolation line search, FR is 

more susceptible to jamming phenomenon than both PR and HS. 
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1. Introduction 

We consider the following system of linear matrix 

inequality constraints: 
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where x ∈ IRn is a variable and each ( )j
iA  is mj x mj 

symmetric matrix. 

LMI constraints have applications in engineering, geometry, 

statistics and in the field of semidefinite programming ([1-6]). 

Let R  denote the feasible region defined by the inequalities 

(1). We will assume that the feasible region R  is bounded 

and it has a nonempty interior. 

Given ω > 0, the weighted analytic centered for the system 

(1) is optimal solution of the optimization problem ([7-9]): 

min{φω(x) | x ∈ IRn} 

where, 
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In the special case of linear constraints, weighted analytic 

center has been studied extensively in the past (for example, 

[10]). A weighted analytic center for LMIs which extends the 

definition given in [10] was given in [7, 8]. 

An infeasible start Newton’s method for computing the 

weighted analytic center was presented in [11, 12] and in the 

case of a single LMI constraint in [13]. The standard Newton’s 
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method can also be used to compute the weighted analytic 

center given a starting interior point [7]. Newton’s method 

requires the gradient and Hessian of the objective function 

φω(x) or the Jacobian of a residual function. In this paper, we 

give conjugate gradient (CG) methods for finding the 

weighted analytic center starting from a given interior point. 

CG methods use only the gradient of φω(x) and do not require 

the Hessian of φω(x). This approach is particularly beneficial 

when the dimensions mj of the matrices are high. CG methods 

also have low memory requirements and strong local and 

global convergence properties [14]. 

In this work, we focus on four conjugate gradient methods 

The methods considered are the classical methods by 

Hestenes-Stiefel (HS), Fletcher and Reeves (FR), Polak and 

Ribiere (PR) discussed in [14] and a relatively new method by 

Rivaie, Abashar, Mustafa and Ismail (RAMI) [15]. We 

compare performance of each method on random test 

problems by observing the number of iterations and time 

required by the method to find the weighted analytic center for 

each test problem. We use Newton’s method exact line search 

and Quadratic Interpolation inexact line search. 

2. Conjugate Gradient Methods 

Consider a continuously differentiable function f: R
n
 → IR 

and the following unconstrained optimization problem 

min{f(x): x ∈ R
n
}.               (3) 

Let g(x) denote the gradient of f(x). A conjugate gradent 

method to find a solution to problem 3 works as follows. 

Given an initial guess xo ∈ Rn, a sequence {xk} is generated by: 

1k k k kx x dα+ = +                  (4) 

and the direction dk is defined as 

1
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where xk is the current iterate, gk =g(xk), βk is the CG 

coefficient and αk > 0 is the step-length obtained by a line 

search. A common convergence criterion for a CG method is 

( )g xk TOL≤� � , where TOL is a given tolerance. 

Over the years, a variety of CG formulas were given, 

where majorly, differences are in the parameter βk. The 

work by [13] discussed details on some CG methods with 

special emphasis on their global convergence. In recent 

times, research carried out by [16-23, 15] focused on some 

modified CG methods. The summary of the CG methods 

considered in this work are given in the Table 1, where ||.|| 

denotes the Euclidean norm. 

Table 1. The classical formulas for parameter βk. 

No. βk Method name References 

1 
�|����|�

�

�|��|�
�   Fletcher-Reeves (FR) method [24] 

2 
����	
�
||��||�

  Polak-Rebiere-Polyak (PR) method [25] 

3 
����	
�
��	
�

  Hestenes-Stiefel (HS) method [26] 

4 
����	(����


��������
������

)��

��	(�������)
  

(RAMI) method [15] 

 
For convex quadratic problems, the first three methods in 

Table 1 are equivalent using exact line search to compute 

the step length α, but behave differently if the objective 

function f(x) is non-convex. The classical method FR 

possess strong convergence properties but not 

computationally powerful. While, methods like PR and HS 

perform better computationally, but may not always 

converge. Problems associated with classical methods gave 

room for improvement through modification and 

hybridization. Convergence analysis and numerical 

experiments showed that RAMI method proposed by [15] is 

robust as compared to FR and PR, since it solved all the 

benchmark problems under consideration, while FR and PR 

did not. 

In this research, these four CG methods are employed to 

find weighted analytic centers for the system (1), observe and 

compare their computational strengths. 

The gradient g of the barrier function φω(x) is given by [8]: 
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The Hessian H(x) of φω(x) is given by [8]: 
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3. Line Searches for Our Conjugate 

Gradient Methods 

We find exact and inexact step-sizes for our conjugate 

gradient methods. Newton’s method is used to find the 

exact step-size and inexact step-size is found using 

Quadratic interpolation. We also discuss convergence for 

the methods. 

Let x be an interior point of R , then ( ) ( ) 0jA x ≻  for 

each constraint j, and the square root of A(j)(x) exists. Given 

a search direction vector d, define the symmetric matrix at x 
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Consider the objective barrier function φω(x). Let dk be a 

conjugate direction generated by the CG algorithm at the 

current iterate xk. Let h(α) = φω(xk + αdk). The exact step-size 

αk is given by 

αk = argmin{h(α) | α ≥ 0}.            (8) 

The following results reduces the cost of computing the 

exact stepsize using Newton’s method. 

Theorem 1 Let xk be an interior point of R  and  be 

the ith eigenvalue of Bj(dk, xk). Then 
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Corollary 1 The derivatives of h(α) are given by 
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Exact line search is applied to compute the step-size αk (8) 

in our CG algorithms using one-dimensional Newton’s 

method starting from α = 0: 

'

1 ''

( )
 

( )

k
k k

k

h

h

αα α
α+ = −              (12) 

We will need the following result to approximate the 

step-size αk (8) using Quadratic interpolation. The proof of 

Theorem 2 can be found in [27]. 

Denote the largest positive eigenvalue of a symmetric 

matrix B by λ+
max(B). 

Theorem 2 Let xk be an interior point ofR . Assume the ray 

{xk +σdk | σ ≥ 0} intersects the boundary of ( ) ( ) 0jA x �  at 

the point ( )j
k kx dσ ++ . Then, the distance to the boundary 

along the ray from xk is given by 

( ) 1/ ( ( , ))j
max j k kB d xσ λ+

+ =          (13) 

Proof: ( ) ( ) 0jA x ≻  when x is in the interior ofR , but on 

the boundary it must have at least one zero eigenvalue. Then 

{ }( ) ( )min | 0,det[ ( )] 0j j
k kA x dσ µ µ µ+ = > + =    (14) 

Now, when µ>0 
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1 is an eigenvalue of ( , )j k kB d xµ −⇔  

This and (14) give 
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max j k kB d xσ λ +

+ =  

The distance σ+ from xk to the boundary of the bounded 

feasible region R  in the direction dk is given by 
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{ }( )min |1j j qσ σ+ += ≤ ≤           (15) 

where ( )jσ+  is given by (13). Note that σ+ exists since R  is 

bounded and xk is an interior point of R . 

The following describes Quadratic interpolation line search 

for approximating the step-sze αk (8) in our CG algorithms 

(see [28]). 

Quadratic Interpolation 

Step 1: Use (15) to find the distance σ+ from xk to the 

boundary of the bounded feasible region R  in the direction 

dk 

Step 2: Set α1 = 0 and α3 = σ+ 

Step 3: Consider h(α) = φω(xk + αdk) 

Repeat 

3 3 / 2α α=  

3 1Until ( ) ( )h hα α<  

Let α2 = α3/2 

Step 4: Compute the zero of the quadratic polynomial P (α) 

passing through the points (α1, P(α1)), (α2, P(α2)) and (α3, 

P(α3)). The zero is given by 
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Step 5: 

If α3 < α∗ 
set αk = α3 

else 

set αk = α∗ 
end 

Let x0 be a starting point for the CG method and consider 

the level set 

L  = {x ∈ IRn | g(x) ≤ g(x0)} 

The gradient g(x) = ∇φω(x) is called Lipschitz continuous in 

a neighborhood N  of L if there exists K ≥ 0 such that 

( ) ( ) , .g x g y K x y x y− ≤ − ∀ ∈� � � N  

L  is called bounded if there is r > 0 such that 

x r x≤ ∀ ∈� � L . 

Let xk be the sequence generated by the CG method. The 

method is called globally convergent if ( ) 0kg x =� �  for 

some k  or 
k 0

l inf 0im kx
→

= . 

If the gradient g(x) = ∇φω(x) is Lipschitz continuous in a 

neighborhood of L , FR method with exact line search is 

globally convergent [29]. We are not aware of any 

implementation or convergence analysis for FR with 

Quadratic interpolation inexact line search in the literature. FR 

is known to be susceptible to jamming phenomenon where it 

takes many short steps without significant decrease in the 

objective function φω(x) [14]. 

PR is globally convergent when φω(x) is strongly convex 

and the line search is exact [30]. PR and HS method with exact 

line search coincide and each is globally convergent if xk+1−xk 

converges to 0 and g is Lipschitz continuous in a 

neighborhood of L  [31]. Again, we have not seen any 

implementation or convergence analysis for either PR or HS 

with Quadratic interpolation inexact line search in the 

literature. Both PR and HS are less susceptible to jamming 

phenomenon than FR [14]. 

RAMI conjugate method with exact line search is globally 

convergent if g is Lipschitz continuous in a neighborhood of 

L and L is bounded [15]. We are not aware of any 

implementation or convergence analysis for RAMI with 

Quadratic interpolation inexact line search in the literature. 

The level set L  is bounded since ⊆L R  and R  is 

bounded. Theorem 3 and Theorem 4 show that the conjugate 

gradient methods with exact line search applied to our 

weighted analytic center problem are globally convergent. 

They show that the methods are suitable. 

Theorem 3 The barrier function φω(x) is strongly convex 

over the interior of the feasible region R . 

Proof: The assumption that R  is bounded and it has a 

nonempty interior implies that the function φω(x) is strictly 

convex over R  [8]. Hence, the Hessian H(x) (2) of φω(x) has 

positive eigenvalues in the interior of R . Since R  is 

bounded, the smallest eigenvalue must have a positive 

minimum value γ. So, ( )H x Iγ�  in the interior of R . This 

and the fact that φω(x) is twice differentiable ([27]) means that 

φω(x) is strongly convex in the interior of R . 

Theorem 4 The gradient g(x) = ∇φω(x) is Lipschitz 

continuous in a neighborhood of the level set L = {x ∈ IRn | 

g(x) ≤ g(x0)}. 

Proof: By [27], φω(x) is analytic in the interior of R . So, 

g(x) = ∇φω(x) is also analytic in the interior ofR . Choose any 

neighborhood N ofL . N  is bounded since ⊆ ⊆N L R  

and R is bounded. Let f(t) = g((1 − t)x + ty. By the mean 

value theorem, for some c ∈ (0, 1) 

g(y) − g(x) = f(1) − f(0) = f0(c) = ∇g((1 − c)x + cy) • (y − x) 

By Cauchy-Schwartz’s inequality, 

.

| ( ) ( ) | | ((1 ) ) ( ) |

                   ((1 ) ) .

g y g x g c x cy y x

g c x cy y x

− = ∇ − + −
≤ ∇ − + −� � � �

 

Since N  is bounded and ∇g is continuous on N , there 

exists K ≥ 0 such that 

|g(y)−g(x)|≤ y x−� �∀x,y∈ N  
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Hence, g(x) is Lipschitz continuous in N . 

4. Numerical Experiments 

In this section, we present numerical experiments to 

compare HS, FR, HR and RAMI conjugate gradient methods 

using exact and interpolation line searches. 

All numerical experiments were done using a Lenevo-PC 

computer with codes written in MATLAB version 8. In all of the 

problems, each LMI 
( ) ( )
0

1

0

n
j j

i i

i

A x A

=

+∑ �  was generated as 

follows: ( )
0

j
A  is an mj × mj diagonal matrix with each diagonal 

entry chosen from U(0, 1) distribution. Each ( )j
iA  (1 )i n≤ ≤  is 

a random mj × mj symmetric sparse matrix with approximately 

0.8 ∗ m2
j nonzero entries generated using the Matlab command 

sprandsym(mj, 0.8). This ensures that each of our test problems is 

random, and that the origin is an interior point for each test 

problem. HS, FR, PR and RAMI congujate gradient methods 

were applied to each problem using a maximum of 1000 

iterations and a tolerance TOL = 10−4. Each method is stopped 

after 1000 iteration or if ( )kg x TOL≤� � . 

Table 2 gives the list of test problems. The second 

column of the table is ambient dimension n and the third 

column gives the number q of LMI constraints. The sizes 

[m1,...,mq] of the matrices is given in the fourth column. 

Table 3 gives the number of iteration and time (in 

seconds) taken by each method to find the weighted 

analytic center for the given weights using exact line search. 

The exact line search was done using one-dimensional 

Newton’s method. 

Table 2. Test Problems. 

LMI Test Problem n q [m1,...,mq] 

1 2 2 [1, 2] 

2 2 3 [5, 4, 5] 

3 2 8 [2, 4, 5, 5, 5, 1, 5, 4] 

4 3 2 [5, 4] 

5 3 2 [3, 4] 

6 4 10 [4, 5, 1, 4, 2, 3, 5, 5, 2, 1] 

7 4 7 [2, 4, 4, 5, 4, 2, 1] 

8 5 6 [5, 1, 4, 4, 4, 5] 

9 5 4 [4, 1, 5, 1] 

10 6 3 [4, 1, 5] 

11 6 8 [2, 5, 2, 5, 5, 3, 5, 2] 

12 7 2 [5, 4]] 

13 7 4 [1, 4, 1, 2] 

14 8 5 [1, 1, 4, 3, 3] 

15 8 5 [5, 4, 5, 2, 5] 

16 9 3 [3, 2, 5] 

17 9 3 [5, 4, 4] 

18 10 8 [4, 2, 3, 4, 5, 4, 4, 2] 

19 10 8 [4, 5, 3, 5, 4, 2, 2, 4] 

20 10 9 [5, 2, 5, 3, 2, 1, 3, 2, 2] 

21 3 6 [3, 4, 1, 5, 4, 1] 

22 5 7 [2, 3, 5, 5, 2, 4, 2] 

23 5 3 [5, 5, 2] 

24 5 9 [2, 4, 4, 1, 4, 5, 3, 5, 1] 

25 10 3 [1, 5, 2] 

26 5 10 [3, 4, 1, 3, 1, 4, 4, 5, 4, 4] 

27 3 7 [2, 3, 4, 5, 4, 1, 5] 

28 5 7 [2, 3, 5, 5, 2, 4, 2] 

29 3 8 [5, 3, 3, 5, 5, 4, 2, 3] 

30 2 6 [4, 4, 3, 1, 5, 2] 

Table 3. Iterations and time taken by each method to find the weighted analytic center for the given weights using exact line search (Newton’s method). 

Prob 

Weights FR HS PR RAMI 

Ω Iter 
Time 

Iter 
Time 

Iter 
Time 

Iter 
Time 

(sec) (sec) (sec) (sec) 

1 [4, 5] 6 0.0053 4 0.0041 4 0.0033 5 0.0047 

2 [3, 175, 1] 14 0.0281 12 0.0228 11 0.0209 11 0.0219 

3 [10, 10, 10, 1, 1, 1, 10, 1] 9 0.0416 8 0.0328 7 0.0295 9 0.0369 

4 [100, 1] 31 0.0474 19 0.0281 16 0.0272 17 0.0249 

5 [1, 10] 10 0.0154 8 0.0146 8 0.0123 9 0.0122 

6 [1, 1, 100, 100, 100, 1, 100, 10, 1, 1] 5 0.2656 20 0.1203 17 0.0989 18 0.1059 

7 [1, 100, 10, 1, 10, 1, 10] 25 0.1045 16 0.0643 16 0.0674 19 0.0777 

8 [10, 10, 1, 10, 1, 1] 42 0.1796 20 0.0839 28 0.1206 27 0.1142 
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Prob 

Weights FR HS PR RAMI 

Ω Iter 
Time 

Iter 
Time 

Iter 
Time 

Iter 
Time 

(sec) (sec) (sec) (sec) 

9 [100, 1, 1, 1] 107 0.2857 49 0.1328 48 0.1304 137 0.3728 

10 [10, 1, 100] 20 0.0517 19 0.0444 21 0.0482 23 0.0537 

11 [1, 1, 1, 10, 10, 1, 100, 1] 46 0.2458 25 0.1315 24 0.1257 31 0.1646 

12 [1, 10] 47 0.0912 36 0.0682 34 0.0644 53 0.1011 

13 [1, 10, 1, 100] 52 0.1467 35 0.0989 38 0.1063 64 0.1797 

14 [1, 1, 10, 10, 10] 34 0.1317 34 0.1321 35 0.1314 42 0.1594 

15 [10, 10, 1, 1, 100] 90 0.3723 37 0.1528 24 0.1006 49 0.2001 

16 [10, 1, 1] 209 0.5898 73 0.2014 71 0.2052 268 0.750 

17 [100, 100, 1] 70 0.1941 56 0.1546 41 0.1146 76 0.2110 

18 [10, 1, 1, 1, 10, 10, 1, 1] 48 0.3132 27 0.1725 29 0.1874 30 0.1951 

19 [1, 10, 1, 100, 1, 10, 10, 1] 177 1.1595 33 0.2144 33 0.2177 46 0.3010 

20 [1, 10, 10, 1, 1, 1, 1, 1, 100] 85 0.6547 38 0.2885 46 0.3509 61 0.4712 

21 [1, 1, 1, 1, 10, 1] 38 0.1313 16 0.0538 11 0.0385 11 0.0366 

22 [10, 1, 1, 1, 10, 1, 1] 18 0.0801 15 0.0659 13 0.0642 16 0.0679 

23 [100, 1, 1] 22 0.0479 27 0.0617 27 0.0621 25 0.0569 

24 [100, 1, 100, 100, 100, 10, 1, 1, 10] 35 0.2086 20 0.1149 19 0.1089 23 0.1306 

25 [1, 100, 10] 61 0.1757 65 0.1887 59 0.1707 132 0.3827 

26 [7, 7, 7, 8, 7, 6, 4, 106, 3, 6] 87 0.6418 92 0.6529 79 0.5501 177 1.2600 

27 [3, 5, 2, 1, 106, 2, 7] 43 0.2032 37 0.1607 32 0.1516 53 0.2383 

28 [1, 1, 4, 8, 5, 8, 3, 106] 42 0.2234 35 0.1906 37 0.2048 32 0.1697 

29 [2, 106, 4, 3] 32 0.0952 33 0.0919 18 0.0535 29 0.0802 

30 [4, 6, 5, 3, 106, 4] 13 0.0464 8 0.0267 8 0.0315 9 0.0291 

Table 4. Iterations and time taken by each method to find the weighted analytic center for the given weights using inexact line search (Quadratic Interpolation). 

The entry “ ⊻ ” means that CG method has failed to find the weighted analytic center due to numerical problems and “ ⊻ ⊻ ” if it failed after the maximum 

number of 1000 iterations (jamming phenomenon). 

Prob 

Weights FR HS PR RAMI 

Ω Iter 
Time 

Iter 
Time 

Iter 
Time 

Iter 
Time 

(sec) (sec) (sec) (sec) 

1 [4, 5] 5 0.0065 5 0.0076 5 0.0069 6 0.0090 

2 [3, 175, 1] 29 0.0783 12 0.0266 9 0.0211 10 0.0229 

3 [10, 10, 10, 1, 1, 1, 10, 1] 10 0.0546 7 0.0342 6 0.0277 7 0.0349 

4 [100, 1] 19 0.0367 13 0.0219 15 0.0258 20 0.0341 

5 [1, 10] 12 0.0229 10 0.0179 10 0.0185 11 0.0171 

6 [1, 1, 100, 100, 100, 1, 100, 10, 1, 1] 19 0.1283 20 0.1349 19 0.1274 20 0.1386 

7 [1, 100, 10, 1, 10, 1, 10] 19 0.0942 14 0.0687 13 0.0632 19 0.1054 

8 [10, 10, 1, 10, 1, 1] 30 0.1526 29 0.1411 29 0.1391 30 0.1454 

9 [100, 1, 1, 1] 242 0.7563 32 0.0963 29 0.0871 31 0.0939 

10 [10, 1, 100] 20 0.0568 17 0.0466 18 0.0497 22 0.0601 

11 [1, 1, 1, 10, 10, 1, 100, 1] 61 0.3749 33 0.2000 26 0.1590 28 0.1711 

12 [1, 10] 123 0.2597 35 0.0699 34 0.0687 51 0.1018 

13 [1, 10, 1, 100] 59 0.1865 36 0.1122 32 0.0992 67 0.2088 

14 [1, 1, 10, 10, 10] 34 0.1425 33 0.1387 33 0.1390 41 0.1700 

15 [10, 10, 1, 1, 100] 92 0.4288 74 0.3430 30 0.1354 43 0.1967 

16 [10, 1, 1] 87 0.2431 93 0.2573 70 0.1995 229 0.6478 

17 [100, 100, 1] 47 0.1504 45 0.1385 46 0.1536 71 0.2179 

18 [10, 1, 1, 1, 10, 10, 1, 1] 26 0.1847 29 0.2082 28 0.1982 29 0.2057 

19 [1, 10, 1, 100, 1, 10, 10, 1] 108 0.7878 39 0.2825 37 0.2677 45 0.3293 

20 [1, 10, 10, 1, 1, 1, 1, 1, 100] 117 0.9866 45 0.3787 44 0.3703 59 0.5027 

21 [1, 1, 1, 1, 10, 1] 10 0.0420 9 0.0333 11 0.0417 9 0.0355 

22 [10, 1, 1, 1, 10, 1, 1] 35 0.1763 18 0.0877 15 0.0715 15 0.0719 

23 [100, 1, 1] 22 0.0565 28 0.0710 28 0.0706 25 0.0633 

24 [100, 1, 100, 100, 100, 10, 1, 1, 10] 27 0.1853 22 0.1452 19 0.1228 24 0.1583 

25 [1, 100, 10] 64 0.2045 59 0.1834 66 0.2108 130 0.4091 

26 [7, 7, 7, 8, 7, 6, 4, 106, 3, 6] ** ** * * * * * * 

27 [3, 5, 2, 1, 106, 2, 7] ** ** * * ** ** * * 

28 [1, 1, 4, 8, 5, 8, 3, 106] * * * * * * * * 

29 [2, 106, 4, 3] ** ** * * * * * * 

30 [4, 6, 5, 3, 106, 4] * * * * * * * * 
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Figure 1. Problem Number Vs Iterations taken by each method to find the weighted analytic center using exact line search (Newton’s method), where +=FR, 

=HS, *=PR, o=RAMI. 

 

Figure 2. Problem Number Vs Time taken by each method to find the weighted analytic center using exact line search (Newton’s method), where +=FR, =HS, 

*=PR, o=RAMI. 
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Figure 3. Problem Number Vs Iterations taken by each method to find the weighted analytic center using inexact line search (Quadratic Interpolation) for the 25 

problems where all four methods were successful and +=FR, =HS, *=PR, o=RAMI. 

 

Figure 4. Problem Number Vs Time taken by each method to find the weighted analytic center using inexact line search (Quadratic Interpolation) for the 25 

problems where all four methods were successful and +=FR, =HS, *=PR, o=RAMI. 
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Figure 5. Graph of the Quadratic Approximation P (α) for Problem 30 with w = [4, 6, 5, 3, 106, 4] at iteration 12. Note P (α) is flat over the interval [h1, h3] = [0, 

1.9462x10−9]. At iteration 13, P (α) does not exist and therefore FR with Quadratic interpolation line search failed. 

The graph of Problem Number vs. Number of Iterations 

for Table 3 is given in Figure 1 and Figure 2 is the graph of 

the Problem Number vs. Time taken. The results in Table 3, 

Figure 1 and Figure 2 show that PR is the best method in 

terms of least number of iterations. Table 4 gives the 

number of iterations and time (in seconds) taken by each 

method to find the weighted analytic center for the given 

weights using Quadratic interpolation inexact line search. 

The entry “ ⊻ ” means that CG method has failed to find the 

weighted analytic center due to numerical problems and 

“ ⊻ ⊻ ” if it did not converge after the maximum number of 

1000 iterations (jamming phenomenon). We see that FR 

had jamming in three problems, while PR had jamming in 

one problem and HS in none. This confirms the known fact 

that FR is more susceptible to jamming than both PR and 

HS. Figure 3 is the graph of the Problem Number vs. 

Number of Iterations taken by each method to find the 

weighted analytic center using inexact line search 

(Quadratic Interpolation) for the 25 problems where all four 

methods were successful. The graph of Problem Number vs. 

Time taken is given in Figure 4. The results in Table 4, 

Figure 3 and Figure 4 show that PR is the best method in 

terms of least number of iterations and time, followed by 

HS, then RAMI, and then FR. 

Therefore, FR with Quadratic interpolation line search 

failed for Problem 30. Our results show that PR and HS are 

superior to RAMI with the problems considered in this 

paper, contrary to the results reported in [23]. 

5. Conclusion 

We have studied four conjugate gradient algorithms applied to 

the problem of weighted analytic center for linear matrix 

inequalities. The methods considered are HS, FR, PR and RAMI. 

For each method, we consider exact line search and 

Quadratic interpolation line search. We use numerical 

experiments on randomly generated test problems to compare 

performance of each method by looking at the number of 

iterations and time taken to compute the weighted analytic 

center. We use one-dimensional Newton’s method exact line 

search and Quadratic Interpolation inexact line search. Our 

numerical results show that PR is the best method, followed 

by HS, then RAMI, and then FR. We find that PR performed 

nearly the same as HS with exact line search, which confirmed 

what is known in the literature. They also show that both line 

searches work well, but exact line search handles weights 

better than the inexact Quadratic interpolation line search 

when some weight is relatively much larger than the other 

weights. We find that all the CG methods with Quadratic 

interpolation inexact line search failed on each problem where 

some weight is relatively much larger than the remaining 

weights. We intend to investigate the same problem using 

hybrid conjugate gradient methods in another paper. We are 

not aware of any convergence analysis for FR, HS, PR or 

RAMI with Quadratic interpolation inexact line search, we 

hope to study it in the future. 
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