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Abstract: This paper examines a mathematical modelling of HIV/AIDS transmission dynamics with drug resistance 

compartment. A nonlinear deterministic mathematical model for the problem is proposed using a system of ordinary 

differential equations. The aim of this study is to investigate the role of passive immunity and drug therapy in reducing the 

viral replication and transmission of the disease. The well possedness of the formulated model equations was proved and the 

equilibrium points of the model have been identified. In addition, the basic reproductive number that governs the disease 

transmission is obtained from the largest eigenvalue of the next-generation matrix. Both local and global stability of the disease 

free equilibrium and endemic of the model was established using basic reproduction number. The results show that the disease 

free equilibrium is locally asymptotically stable if the basic reproduction number is less than unity and unstable if the basic 

reproduction number is greater than unity. It is observed that if the basic reproduction is less than one then the solution 

converges to the disease free steady state i.e., disease will wipe out and thus the drug therapy is said to be successful. On the 

other hand, if the basic reproduction number is greater than one then the solution converges to endemic equilibrium point and 

thus the infectious cells continue to replicate i.e., disease will persist and thus the drug therapy is said to be unsuccessful. 

Sensitivity analysis of the model is performed on the key parameters to determine their relative importance and potential 

impact on the transmission dynamics of HIV/AIDS. Numerical results of the model show that a combination of passive 

immunity and drug therapy is the best strategy to reduce the disease from the community. 
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1. Introduction 

Human Immunodeficiency Virus (HIV) is the causative 

agent of Acquired Immunodeficiency Syndrome (AIDS). It is 

a disease that causes progressive failure of the immune 

system. HIV is an RNA retrovirus. That is, to enter a cell, 

HIV translates its RNA to DNA with a viral enzyme called 

reverse transcriptase [1]. The target cell of HIV is CD4 T 

cells. A healthy human body has about 1000/mm
3
 of CD4 T 

cells. When the CD4 T cells of a patient decline to 200/mm
3
 

or below, then that person is classified as having AIDS [2]. 

When the CD4 T cells decline, they cannot mount a strong 

response. This results in weak responses from CTL and 

antibodies which cannot clear the infection [3]. HIV is 

transmitted primarily via unprotected sexual intercourse, 

contaminated blood transfusions, hypodermic needles, and 

from mother to child during pregnancy, delivery, or 

breastfeeding. There is no cure or vaccine to AIDS. However, 

antiretroviral (ART) treatment improves health, pro-longs 

life, and substantially reduces the risk of HIV transmission. 

More than 90% of adults in sub-Saharan Africa acquire HIV 

infection from unprotected sexual intercourse with infected 

partners [4]. 

Globally, new HIV infections among young women aged 

15–24 years were reduced by 25% between 2010 and 2018. 

This is good news, but of course it remains unacceptable that 

every week 6000 adolescent girls and young women become 

infected with HIV. The sexual and reproductive health and 

rights of women and young people are still too often denied. 

The annual number of deaths from AIDS-related illness 

among people living with HIV globally has fallen from a 

peak of 1.7 million in 2004 to 770 000 in 2018. The global 

decline in deaths has largely been driven by progress in 

eastern and southern Africa, which is home to 54% of the 
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world’s people living with HIV. AIDS-related mortality in the 

region declined by 44% from 2010 to 2018. The annual 

number of new infections since 2010 has declined from 2.1 

million to 1.7 million in 2018 [5]. 

Mathematical modeling in epidemiology provides 

understanding of the underlying mechanisms that influence 

the spread of disease, and in the process, it suggests control 

strategies. The model formulation process clarifies 

assumptions, variables, and parameters. Moreover, models 

provide conceptual results such as thresholds, basic 

reproduction numbers, contact numbers, and replacement 

numbers. Mathematical models and computer simulations are 

useful experimental tools for building and testing theories, 

assessing quantitative conjectures, answering specific 

questions, determining sensitivities to changes in parameter 

values, and estimating the key parameters from data [6]. 

Many mathematical models have proved their usefulness 

for describing and understanding the dynamics of HIV 

infection. K. O. Okosun [7] presented the impact of optimal 

control on the treatment of HIV/AIDS and screening of 

unaware infectives on the transmission dynamics of the 

disease in a homogeneous population with constant 

immigration of susceptibles incorporating use of condom, 

screening of unaware infectives and treatment of the infected. 

Karrakchou et al. [8] investigated the fundamental role of 

chemotherapy treatment in controlling the virus reproduction 

in an HIV patient, while Adams et al. [9] derived HIV 

therapeutic strategies by formulating and analyzing an 

optimal control problem using two types of dynamic 

treatments. The author [10] develop a mathematical model 

for HIV/AIDS transmission has been proposed, along with a 

control problem in which the objective was to determine the 

pre-exposure prophylaxis (PrEP) strategy that minimizes the 

number of individuals with pre-AIDS HIV infection, 

balanced against the costs associated with PrEP. The paper by 

Mukandavire et al. [11] compares the impact of increasing 

condom use or HIV PrEP use among sex workers. The 

authors found that condom promotion interventions should 

remain the mainstay HIV prevention strategy for female sex 

workers (FSWs), with PrEP only being implemented once 

condom interventions have been maximized or to fill 

prevention gaps where condoms cannot be used. The author 

[12] develop a model of HIV risk and compare HIV-risk 

estimates before and after the introduction of PrEP to 

determine the maximum tolerated reductions in condom use 

with regular partners and clients for HIV risk not to change. 

With a case study of FSWs in South Africa, it is found that 

PrEP is likely to be of benefit in reducing HIV risk, even if 

reductions in condom use do occur. 

So far, few mathematical studies have been undertaken to 

model Human Immunodeficiency Virus mathematically, but 

they did not considered drug resistance in their studies. 

2. Model Description and Formulation 

The model for virus dynamics consists of a system of six 

ordinary differential equations, including variables 

�, �, �, �, �� and �  represents the Passive immunity class, 

susceptible class, infected class, AIDS class, drug resistance 

class and removed class. 

i. The passive immunity individuals are produced by 

birth with rate	Π. 

ii. The susceptible individuals are increased by		, the per 

unit of time rate of loss of maternal antibodies and 

from drug resistance compartment in which those 

individuals who are treated by drug therapy but did 

not respond to drug therapy with waning rate of 
 and 

joined to removed class at rate �  by losing their 

natural immunity. 

iii. Susceptible individual may acquire HIV infection 

when they become into effective contact with force of 

infection 	� = �� �⁄ where 	�  transmission rate 

constant, then the number of individuals who become 

infected per unit of time is equal to	� = ��� �⁄ . 

iv. Infected individuals move to drug resistance class at a 

rate	� and may progress to develop AIDS is a failure 

of the natural immunity at a rate	�. 

v. Individuals in the drug resistance class move to 

removed class at a rate of�  by drug therapy, with 

therapy efficacy of	� proportion of individuals join the 

removed class or join the AIDS class with�1 − �� 
proportion by adapting the therapy. 

vi. Individuals with AIDS may die as a result of the AIDS 

infection at a rate	�. 

vii. In all compartments	� is the natural mortality rate of 

individuals. 

viii. All parameters in the model are positive. 

Description of Variables and Parameters 

The variables and parameters used in this model are 

introduced in Tables 1 and 2. Their notations and descriptions 

are also included. 

Table 1. Description of Variables used in the model equations (1) – (6). 

Variable Description N�t� 	 The total population at time t M�t� 	 Passive ImmunityCompartment S�t� 	 Susceptible Compartment I�t� 	 Infected Compartment A�t� 	 AIDS Compartment R"�t� 	 Drug Resistance Compartment R�t� 	 Removed Compartment 

Table 2. Description of parameters used in the model equations (1) – (6). 

Parameter Description #  Birth rate of passive immunity. �  Transmission rate constant. 	  Recruited rate of susceptible individuals. �  Rate of therapy. �  Removed rate of susceptible class. �  Force of infection. �  Removed rate of drug resistance class. �  Death rate due to infection. �  Progression rate from �to�. �  Natural death rate. 

Based on the model assumptions the population flow 

diagram can be visualized as shown in Figure 1. 
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Figure 1. Schematic diagram of the model. 

The population flow diagram as shown in Figure 1 can be 

translated into a system of six differential equations as 

follows: $� $% = Π − 	� − ��⁄                                        (1) $� $% = 	� − � + 
�� − �� + ���⁄                     (2) $� $% = � − �� + � + ���⁄                                      (3) $�� $% = �� −⁄ �1 − ����� − �
 + �� + ����    (4) $� $% = �1 − ����� + �� − �� + ���⁄                   (5) $� $% = �� + ���� − ��⁄                                       (6) 

The non-negative initial conditions of the system of model 

equations (1) – (6) are denoted by ��0� = �), ��0� =�), ��0� = �), ��0� = �), ���0� = 	��), ��0� = �) . This 

system consists of six first order non-linear ordinary 

differential equations. 

3. Model Analysis 

3.1. Invariant Region 

We obtained the invariant region, in which the model 

solution is bounded. To do this, first we considered the total 

human population ���, Here� = � + � + � + � + �� + � . 

Then, differentiating � both sides with respect to % leads to; $� $%⁄ = �$� $%⁄ � + �$� $%⁄ � + �$� $%⁄ � + �$� $%⁄ � + �$�� $%⁄ � + �$� $%⁄ �      (7) 

By combining �1 − 6� and �7�, we can get $� $%⁄ = Π − �� − ��                           (8) 

In the absence of mortality due to AIDS (8) becomes $� $%⁄ = Π − ��                                  (9) 

Equivalently this inequality can be expressed as a linear 

ordinary differential inequality as ,dN�t� dt⁄ . + μN�t� ≤ Π 

giving general solution upon solving as N�t� ≤ �Π μ⁄ � +12345 . But, the term ��0� denotes the initial values of the 

respective variable i.e., N�t� = N�0�  at 	t = 0 . Thus, the 

particular solution can be expressed as N�t� ≤ �Π μ⁄ � +,N�0� − �Π μ⁄ �.2345 . Further, it can be observed that ��%� → �Π μ⁄ �  as% → ∞ . That is, the total population size ��%� takes off from the value N�0� at the initial time t = 0 

and ends up with the bounded value �Π μ⁄ �  as the time %	grows to infinity. Thus, it can be concluded that 	��%� is 

bounded as	0 ≤ ��%� ≤ �Π μ⁄ �. Thus, the feasible solution 

set of the system equation of the model enters and remains in 

the region: Ω = 8��, �, �, �, ��, �� ∈ ℜ;< :	� ≤ Π �⁄ > 
Therefore, the basic model is well posed epidemiologically 

and mathematically. Hence, it is sufficient to study the 

dynamics of the basic model in the regionΩ. 

3.2. Existence of the Solution 

Lemma 1: (Existence) Solutions of the model equations (1) 

– (6) together with the initial conditions	��0� > 0, ��0� >0, ��0� > 0, ��0� > 0, ���0� > 0, ��0� > 0 exist in ℝ;<  i.e., 

the modelvariables	��%�, ��%�, ��%�, ��%�, ���%�and	��%�exist 

for all % and will remain inℝ;< . 

Proof: The right hand sides of the system of equations (1) 

– (6) can be expressed as follows AB��, �, �, �, ��, �� = Π − 	� − �� AC��, �, �, �, ��, �� = 	� − � + 
�� − �� + ��� AD��, �, �, �, ��, �� = � − �� + � + ��� AE��, �, �, �, ��, �� = �� − �1 − ����� − �
 + �� + ���� AF��, �, �, �, ��, �� = �1 − ����� + �� − �� + ��� A<��, �, �, �, ��, �� = �� + ���� − �� 
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According to Derrick and Groosman theorem, letΩ denote the 

region Ω = 8��, �, �, �, ��, �	� ∈ ℜ;< :	� ≤ Π �⁄ > . Then 

equations (1) – (6) have a unique solution if�GAH� IGJKL⁄ , M, N =
1, 2, 3, 4, 5, 6  are continuous and bounded in Ω . Here,JB =�, JC = �, JD = �, JE = �, JF = �� andJ< = �. The continuity 

and the boundedness are verified as here under: 

Table 3. Continuity and boundedness of the model solution. |�GAB� �G��⁄ | = |−�	 + ��| < ∞  |�GAC� �G��⁄ | = |	| < ∞  |�GAB� �G��⁄ | = 	0 < ∞  |�GAC� �G��⁄ | = |−��� �⁄ + � + ��| < ∞  |�GAB� �G��⁄ | = 	0 < ∞  |�GAC� �G��⁄ | = |−��� �⁄ �| < ∞  |�GAB� �G��⁄ | = 	0 < ∞  |�GAC� �G��⁄ | = 	0 < ∞  |�GAB� �G���⁄ | = 	0 < ∞  |�GAC� �G���⁄ | = |
| < ∞  |�GAB� �G��⁄ | = 0 < ∞. |�GAC� �G��⁄ | = 0 < ∞.  |�GAD� �G��⁄ | = 	0 < ∞  |�GAE� �G��⁄ | = 	0 < ∞  |�GAD� �G��⁄ | = |−��� �⁄ �| < ∞  |�GAE� �G��⁄ | = 	0 < ∞  |�GAD� �G��⁄ | = |��� �⁄ � − �� + � + ��| < ∞  |�GAE� �G��⁄ | = � < ∞  |�GAD� �G��⁄ | = 	0 < ∞  |�GAE� �G��⁄ | = 	0 < ∞  |�GAD� �G���⁄ | = 	0 < ∞ |�GAD� �G��⁄ | = 0 < ∞. 

|�GAE� �G���⁄ | = |−,�1 − ��� + �
 + �� + ��.| < ∞ |�GAE� �G��⁄ | = 0 < ∞. |�GAF� �G��⁄ | = 	0 < ∞  |�GA<� �G��⁄ | = 	0 < ∞  |�GAF� �G��⁄ | = 	0 < ∞  |�GA<� �G��⁄ | = |�| < ∞  |�GAF� �G��⁄ | = |�| < ∞  |�GA<� �G��⁄ | = 	0 < ∞  |�GAF� �G��⁄ | = |−�� + ��| < ∞  |�GA<� �G��⁄ | = 	0 < ∞  |�GAF� �G���⁄ | = |�1 − ���| < ∞  |�GA<� �G���⁄ | = |�� − �| < ∞  |�GAF� �G��⁄ | = 0 < ∞. |�GA<� �G��⁄ | = |−�| < ∞. 

 

Thus, all the partial derivatives �GAH� IGJKL,⁄ M, N =1, 2, 3, 4, 5, 6 exist, continuous and bounded inΩ. Hence, by 

Derrick and Groosman theorem, a solution for the model (1) 

– (6) exists and is unique. 

3.3. Positivity of the Solution 

We assumed that the initial condition of the model is 

nonnegative, and now we also will show that the solution of 

the model is also positive. 

Theorem 1: LetΩ =	 V��, �, �, �, ��,�� ∈ ℝ;< ; �) >0, �) > 0, �) > 0, �) > 0, ��) > 0, R) > 0X ; then the 

solutions of	8�, �, �, �, ��, �> are positive for all	% ≥ 0. 

Proof: Positivity is verified separately for each of the 

model ��%�, ��%�, ��%�, ��%�, ���%�	and	��%�. 
Positivity of ��%� : The model equation (1) given by $� $% = Π − 	� − ��⁄  can be expressed without loss of 

generality, after eliminating the positive terms Π which are 

appearing on the right hand side, as an inequality as $� $%⁄ ≥ −,	 + �.� . Using variables separable method 

and on applying integration, the solution of the foregoing 

differentially inequality can be obtained as 	��%� ≥�),2JZ − �	 + ��%.. Recall that an exponential function is 

always non–negative irrespective of the sign of the exponent, 

i.e., the exponential function ,2JZ − �	 + ��%. is a non-

negative quantity. Hence, it can be concluded that	��%� ≥ 0. 

Positivity of ��%� : The model equation (2) given by $� $% = 	� − ��� �⁄ + 
�� − �� + ���⁄  can be expressed 

without loss of generality, after eliminating the positive term ,	� + 
��. which are appearing on the right hand side, as 

an inequality as $� $%⁄ ≥ −,��� �⁄ � + �� + ��.� . Using 

variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be 

obtained as	��%� ≥ �),2JZ − ���� �⁄ � + �� + ���%.. Recall 

that an exponential function is always non–negative 

irrespective of the sign of the exponent, i.e., the exponential 

function ,2JZ − ���� �⁄ � + �� + ���%.  is a non-negative 

quantity. Hence, it can be concluded that	��%� ≥ 0. 

Positivity of ��%� : The model equation (3) given by $� $% = ��� �⁄ − �� + � + ���⁄  can be expressed without 

loss of generality, after eliminating the positive term ,��� �⁄ . 
which are appearing on the right hand side, as an inequality as $� $%⁄ ≥ −�� + � + ��� . Using variables separable method 

and on applying integration, the solution of the foregoing 

differentially inequality can be obtained as 	��%� ≥�),2JZ − �� + � + ��%.. Recall that an exponential function 

is always non–negative irrespective of the sign of the exponent, 

i.e., the exponential function ,2JZ − �� + � + ��%. is a non-

negative quantity. Hence, it can be concluded that	��%� ≥ 0. 

Positivity of ���%� : The model equation (4) given by $�� $% = �� −⁄ �1 − ����� − �
 + �� + ����  can be 

expressed without loss of generality, after eliminating the 

positive term ,��.which are appearing on the right hand side, 

as an inequality as $�� $%⁄ ≥ −,�1 − ��� + �
 + �� +��.�� . Using variables separable method and on applying 

integration, the solution of the foregoing differentially 

inequality can be obtained as ��	�%� ≥ ��)[2JZ −I�1 − ��� + �
 + �� + ��L%\ . Recall that an exponential 

function is always non–negative irrespective of the sign of 

the exponent, i.e., the exponential function [2JZ −I�1 − ��� + �
 + �� + ��L\  is a non-negative quantity. 

Hence, it can be concluded that	���%� ≥ 0. 

Positivity of ��%� : The model equation (5) given by $� $% = �1 − ����� + �� − �� + ���⁄  can be expressed 

without loss of generality, after eliminating the positive 

term,�1 − ����� + ��.which are appearing on the right hand 

side, as an inequality as $� $%⁄ ≥ −�� + ���. Using variables 

separable method and on applying integration, the solution of 

the foregoing differentially inequality can be obtained as��%� ≥�),2JZ − �� + ��%. . Recall that an exponential function is 
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always non–negative irrespective of the sign of the exponent, i.e., 

the exponential function 	,2JZ − �� + ��%. .is a non-negative 

quantity. Hence, it can be concluded that	��%� ≥ 0. 

Positivity of ��%� : The model equation (5) given by $� $% = �� + ���� − ��⁄  can be expressed without loss of 

generality, after eliminating the positive term ,�� +����.which are appearing on the right hand side, as an 

inequality as $� $%⁄ ≥ −�� . Using variables separable 

method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as	��%� ≥�),2JZ − �%.. Recall that an exponential function is always 

non–negative irrespective of the sign of the exponent, i.e., the 

exponential function	,2JZ − �%.. is a non-negative quantity. 

Hence, it can be concluded that	��%� ≥ 0. 

Thus, the model variables ��%�, ��%�, ��%�, ��%�, ���%� and ��%�representing population sizes of various types of cells 

are positive quantities and will remain in ℝ;< for all%. 
3.4. The Disease Free Equilibrium (DFE) 

To find the disease free equilibrium, we equated the 

right hand sides of model equations �1 − 6�  to zero, 

evaluating it at � = � = 0 and solving for the non-infected 

and non-asymptomatic variables. Thus, the disease-free 

equilibrium point of the model equation in (1) – (6) above 

is given by 

]) = V�), �), �), �), ��), �)X = 8,π �α + μ�⁄ ., ,α π �α + μ��φ + μ�⁄ ., 0, 0, 0, ,φα π μ�α + μ��φ + μ�⁄ .> 
3.5. The Basic Reproduction Number	�ab� 

In this section we obtained the threshold parameter that 

governs the spread of a disease which is called the basic 

reproduction number is obtained. To obtain the basic 

reproduction number, we used the next-generation matrix 

method so that it is the spectral radius of the next-generation 

matrix [13]. 

The model equations are rewritten starting with newly 

infective classes: 

$� $% = � − �� + � + ���⁄  $� $% = �1 − ����� + �� − �� + ���⁄  

Then by the principle of next-generation matrix, we obtained 

cH = d��� �⁄0 eandfH = g �� + � + ����� + ��� − �1 − ����� − ��h  (11) 

The Jacobian matrices of cH  and fH  evaluated at DFE are 

given by c and	f, respectively, such that 

c = d,�	� �	 + ��⁄ �� + ��. 00 0eand	f = g� + � + � 0−� � + �h                                   (12) 

It can be verified that the matrix fis non-singular as its 

determinant $2%,f. = �� + � + ���� + ��  is non-zero and 

after some algebraic computations its inverse matrix is 

constructed as 

f3B = g ,1 �� + � + ��⁄ . 0,� �� + ���� + � + ��⁄ . ,1 �� + ��⁄ .h. 
The product of the matrices c and f3B can be computed 

as: 

cf3B = d,�	� �	 + ��⁄ �� + ��. 00 0e g ,1 �� + � + ��⁄ . 0,� �� + ���� + � + ��⁄ . ,1 �� + ��⁄ .h = d,�	� �	 + ���� + ��⁄ �� + ��. 00 0e 
Now it is possible to calculate the eigenvalue to determine 

the basic reproduction number ℜ) by taking the spectral radius 

of the matrixcf3B . Thus, the eigenvalues are computed by 

evaluating $2%,cf3B −j�. = 0 or equivalently solving 

k,�	� �	 + ���� + ��⁄ �� + ��. − j 00 −jk = 0 

It reduces to the quadratic equation for j	 as −j[,�	� �	 + ���� + ��⁄ �� + ��. − j\ = 0  giving the 

two eigenvalues as jB = ,�	� �	 + ���� + ��⁄ �� +��., jC = 0. 

However, the dominant eigenvalue here is jB =,�	� �	 + ���� + ��⁄ �� + ��.and is the spectral radius as 

the threshold value or the basic reproductive number. Thus, it 

can be concluded that the reproduction number of the model 

is	ℜ) = ,�	� �	 + ���� + ��⁄ �� + ��.. 
3.6. Local Stability of Disease Free Equilibrium 

Theorem 2: The disease free equilibrium point ])  of the 

system (1) – (6) is locally asymptotically stable if ℜ) < 1 

and unstable if	ℜ) > 1. 

Proof: To proof this theorem first we obtain the Jacobian 

matrix of system (10) at the disease free equilibrium ])  as 

follows: 

l�])� =
mn
nnn
o−p 0 0 0 0 0	 −�� + �� −ℜ) 0 
 00 0 ℜ) − q 0 0 00 0 � −�� + �� �1 − ��� 00 0 � 0 −,�1 − ��� + 1. 00 � 0 0 �� −�rs

sss
t
 



 American Journal of Applied Mathematics 2020; 8(1): 34-45 39 

 

Now, the eigenvalues of l�])� are required to be found. The characteristic equation $2%,l�])� − j�. = 0 is expanded and 

simplified as follows: 

u
u−p − j 0 0 0 0 0	 −�� + �� − j −ℜ) 0 
 00 0 ℜ) − q − j 0 0 00 0 � −�� + �� − j �1 − ��� 00 0 � 0 −,�1 − ��� + 1. − j 00 � 0 0 �� −� − ju

u =0 

,−p − j.,−�� + �� − j.,ℜ) − q − j.,−�� + �� − j.,−,�1 − ��� + 1. − j.,−� − j. = 0 ,−p − j. = 0,,−�� + �� − j. = 0, ,ℜ) − q − j. = 0, ,−�� + �� − j. = 0, ,−,�1 − ��� + 1. − j. = 0, ,−� − j. = 0 

Thus, the five eigenvalues of the matrix are determined as jB = −j jC = −�� + �� jD = −�ℜ) − q� jE = −�� + �� jF = −,�1 − ��� + 1. j< = −� 

Where p = �	 + ��, q = 	 �� + � + ��, 1 = �
 + �� + �� 
It can be observed that all the 

eigenvalues	jB, jC, jD, jE, jF and j< are absolutely negative 

quantities. Therefore, it is concluded that the DFE ]) of the 

system of differential equations (1) – (6) is locally 

asymptotically stable if ℜ) < 1 and unstable if	ℜ) > 1. 

3.7. Global Stability of the DFE vb 

Theorem 3: The disease free equilibrium point ])  of the 

model is globally asymptotically stable if ℜ) < 1  and 

unstable if	ℜ) > 1. 

Proof: To prove the global asymptotic stability of the DFE 

we use the method of Lyapunov function. Systematically, we 

define a Lyapunov function w such that: w = ,1 �� + � + ��⁄ .� 
Then 

$w $%⁄ = ,1 �� + � + ��⁄ . $� $%⁄  = ,1 �� + � + ��⁄ .,���� �⁄ � − �� + � + ���. = ,��	�� �� + � + ���	 + ���� + �� − 1⁄ .� = ,ℜ) − 1.� 
So 	$w $%⁄ ≤ 0 , if ℜ) < 1 . Furthermore, $w $%⁄ = 0  if � = 0 orℜ) = 1. From this we see that, 8�), �), 0,0, ��), �)> 

is the only singleton in 8��), �), �), �), ��), �)� ∈
Ω:	 $w $%⁄ = 0	> . Therefore by the principle of (LaSalle, 

1976), DFE is globally asymptotically stable if	ℜ) ≤ 1. 

3.8. The Endemic Equilibrium 

Endemic equilibrium point]B  is a steady state solution 

where the disease persists in the community. For the 

existence and uniqueness of endemic equilibrium ]B =8�∗, �∗, �∗, �∗, ��∗, �∗>  its coordinates should satisfy the 

conditions ]B = 8�∗, �∗, �∗, �∗, ��∗, �∗> ≠ 0 , where 	M) >0, S) > 0, I) > 0, A) > 0, R") > 0, and	R) > 0. The endemic 

equilibrium point is obtained by setting left hand sides of 

equations of the system (1) – (6) to zero. We then solved for 

state variables in terms of the force of infection, �∗and obtain 

the following; �∗ = Π p⁄  �∗ = ,,	Π. ,p. +⁄ ,
��∗. ,q�1 − ��� + q1.⁄− �∗.,1 �� + ��⁄ . �∗ = �∗ q⁄  

�∗ = ,1 �� + ��⁄ .[��1 − �����∗� qI�1 − ��� + q1L + ��∗ q⁄⁄ \ ��∗ = ,ω�∗. ,q�1 − ��� + q1.⁄  �∗ = ,��∗ + ,ηρω�∗. ,q�1 − ��� + q1.⁄ .,1 �⁄ . 
Here p = �	 + ��, q = �� + � + ��, 1 = �
 + �� + ��. 
On substituting the expression for �∗  into the force of 

infection, that is,�∗ = ,��∗. ,�.⁄ , characteristic polynomial 

of force of infection is obtained as Z��∗� = }B�∗ 

Here }B = ,��. ,qΠ.⁄  

Clearly, }B > 0, whenever	ℜ) < 1, and	�∗ ≥ 0. From this, 

we see that, for ℜ) < 1 , there is a unique endemic 

equilibrium for this model. 

Lemma 2: A unique endemic equilibrium point ]B  exists 

and is positive if	ℜ) > 1. 

3.9. The Global Stability of the Endemic Equilibrium 

Theorem 4: If	ℜ) > 1, the endemic equilibrium ]B of the 

model �1 − 6� is globally asymptotically stable. 

Proof: To prove the global asymptotic stability of the 
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endemic equilibrium we use the method of Lyapunov functions. Define 
 w��∗, �∗, �∗, �∗, ��∗, �∗� = ,� −�∗ −�∗~���∗ �⁄ �. + ,� − �∗ − �∗~���∗ �⁄ �. + ,� − �∗ − �∗~���∗ �⁄ �. + ,� − �∗ − �∗~���∗ �⁄ �. + ,�� − ��∗ − ��∗~����∗ ��⁄ �. + ,� − �∗ − �∗~����. 

By direct calculating the derivative of w along the solution �1 − 6� we have $w $%⁄ = ,�� −�∗� �⁄ . $� $%⁄ + ,�� − �∗� �⁄ . $� $%⁄ + ,�� − �∗� �⁄ . $� $%⁄ + ,�� − �∗� �⁄ . $� $%⁄ + ,��� − ��∗� ��⁄ . $�� $%⁄ + ,�� − �∗� �⁄ . $� $%⁄ , = ,�� −�∗� �⁄ .,Π − 	� − ��. + ,�� − �∗� �⁄ .,	� − � + 
�� − �� + ���. + ,�� − �∗� �⁄ .,� − �� + � + ���.+ ,�� − �∗� �⁄ .,�1 − ����� + �� − �� + ���. + ,��� − ��∗� ��⁄ .,�� − �1 − ����� − �
 + �� + ����.+ ,�� − �∗� �⁄ .,�� + ���� − ��. = ,1 − �∗ �⁄ .,Π − 	� − ��. + ,1 − �∗ �⁄ .,	� − � + 
�� − �� + ���. + ,1 − �∗ �⁄ .,� − �� + � + ���.+ ,1 − �∗ �⁄ .,�1 − ����� + �� − �� + ���. + ,1 − ��∗ ��⁄ .,�� − �1 − ����� − �
 + �� + ����.+ ,1 − �∗ �⁄ .,�� + ���� − ��. $w $%⁄ = Π + �1 − �����∗ + 	�∗ + ��∗ + �� + ���∗ + ��∗ + �
 + �����∗ + ,�∗ + �∗ +	�∗ + ��∗ + �∗.�+ �� + 
���,�∗ �⁄ .− ,�Π�∗ �⁄ � + �αM�∗ �⁄ � + �λ�∗ �⁄ � + ��1 − ρ�ηR"�∗ �⁄ � + �θI�∗ �⁄ � + �ωI��∗ ��⁄ �+ ��φS + ηρR"��∗ �⁄ � + �� + �� + � + � + � + �� + ���. 
Thus collecting positive and negative terms together we obtain $w $%⁄ = Π + �1 − �����∗ + 	�∗ + ��∗ + �� + ���∗ + ��∗ + �
 + �����∗ +�∗� + �� + 
���,�∗ �⁄ . − ,�Π�∗ �⁄ � + �αM�∗ �⁄ � + �λ�∗ �⁄ � + ��1 − ρ�ηR"�∗ �⁄ � + �θI�∗ �⁄ � + �ωI��∗ ��⁄ �+ ��φS + ηρR"��∗ �⁄ � + �� + ��. $w $%⁄ = � − �. 

Here,� = Π + �1 − �����∗ + 	�∗ + ��∗ + �� + ���∗ + ��∗ + �
 + �����∗ + �∗� + �� + 
���,�∗ �⁄ ., � = ,�Π�∗ �⁄ � + �αM�∗ �⁄ � + �λ�∗ �⁄ � + ��1 − ρ�ηR"�∗ �⁄ � + �θI�∗ �⁄ � + �ωI��∗ ��⁄ � + ��φS + ηρR"��∗ �⁄ � + �� + ��. � = � + � + � + � + �� + � and �∗ = �∗ + �∗ +	�∗ + ��∗ + �∗ 
Thus if	� < �, then	$w $%⁄ ≤ 0. Noting that $w $%⁄ = 0 if 

and only if � = �∗, � = �∗, � = �∗, � = �∗, �� = ��∗, � =�∗. Therefore, the largest compact invariant set in 8��∗, �∗, �∗, �∗, ��∗, �∗� ∈ Ω: $w $%⁄ = 0>  is the singleton ]B 

is the endemic equilibrium of the system �1 − 6� . By 

LaSalle’s invariant principle (LaSalle’s, 1976), it implies that ]B is globally asymptotically stable in Ω if	� < �. 

4. Numerical Simulation 

In this section, the numerical simulation study of model 

equations (1) – (6) is carried out using the software DE 

Discover 2.6.4. To conduct the study, a set of meaningful 

values are assigned to the model parameters. These values 

are either taken from literature or assumed. Using the 

parameter values given in Table 3 and the initial 

conditions  ��0� = 1000, ��0� = 800, ��0� = 600 , ���0� = 500, ��0� = 100 

and ��0� = 400  in the model equations (1) – (6) a 

simulation study is conducted and the results are given in the 

following Figures. 

Table 4. Parameter values used in Numerical Simulations. 

Parameter Value Reference Π  15 assumed �  0.02 assumed �  4 assumed �  0.03 assumed 	  0.8 assumed �  0.8 assumed �  0.01 assumed �  0.05 assumed 
  0.04 assumed �  0.5 assumed � 0.48 assumed 

Figure 2 shows that the basic reproduction number with 

respect to drug therapy. It is evident that drug therapy played 

a major role in reducing viral replication and stability to be 

achieved at		ℜ) < 1. 

Figure 3 shows that the basic reproduction number with 

passive immunity. It is evident that passive immunity plays a 

role in reducing viral replication. Clearly, forℜ) < 1 , the 

stability of disease free equilibrium is achievable in the 

presence of passive immunity. 
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Figure 2. Figure showing ℜ) with respect to Drug Resistance. 

 

Figure 3. Figure showing ℜ) with respect to Passive Immunity. 
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Figure 4 shows that the number of susceptible individuals, 

infected individuals and AIDS individuals are decreases 

slowly due to the presence of passive immunity and drug 

therapy. Withℜ) = 0.156  and the transmission � 
 0.53 , 

implies that passive immunity and drug therapy can reduce 

the viral replication and transmission of the disease in the 

population when	:) T 1. 

Figure 5 shows that the number of infected individuals and 

AIDS individuals rises slowly to a value slightly above 

200/mm
3
. This implies that passive immunity and drug 

therapy played a major role in reducing the viral replication 

and transmission. 

Figure 6 shows that the number of are increases when 

there were no passive immunity and drug therapy. But the 

number of susceptible individuals decreases, implying that 

most of susceptible individuals are infected and removed. 

 

Figure 4. Simulation results when:) T 1. 

 

Figure 5. Simulation results when:) ? 1. 
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Figure 6. Simulation results without passive immunity and drug therapy. 

5. Sensitivity Analysis 

We carried out sensitivity analysis in order to determine 

the relative significance of model parameters on disease 

transmission. The analysis will enable us to find out 

parameters that have high impact on the basic reproduction 

number and which should be targeted by intervention 

strategies. We perform sensitivity analysis by calculating the 

sensitivity indices of the basic reproduction number in order 

to determine whether HIV can be spread in the population or 

not. These indices tell us how crucial each parameter is on 

the transmission of the HIV. To investigate which parameters 

in the model system (1) – (6) have high impact on the	ℜ), we 

apply the approach presented by [14]. 

The explicit expression of ℜ)is given by ℜ) = ,�	� �	 + ���� + ���� + � + ��⁄ .. 
Since ℜ)  depends only on six parameters, we derive an 

analytical expression for its sensitivity to each parameter 

using the normalized forward sensitivity index as by Chitnis 

[15] as follows: Υ��� = ,G�) �⁄ . � ,� �)⁄ . = 1 

Υ��� 
 ,G�) 	⁄ . � ,	 �)⁄ . 
 � �	 ' ��⁄  

Υ4�� 
 ,G�) �⁄ . � ,� �)⁄ .

 g �	 ' ���� ' ���� ' � ' �� �

�,�� ' ���� ' � ' �� ' �	 ' ���� ' � ' �� ' �	 ' ���� ' ��.h ,�	 ' ���� ' ���� ' � ' ��.�  

Υ��� 
 ,G�) �⁄ . � ,� �)⁄ . 
 �� �� ' ��⁄  

Υ��� 
 ,G�) �⁄ . � ,� �)⁄ . 
 �� �� ' � ' ��⁄  

Υ��� 
 ,G�) �⁄ . � ,� �)⁄ . 
 �� �� ' � ' ��⁄  

Table 5. Sensitivity indices Table. 

Parameter Symbol Sensitivity indices 

�  +1 

�  0.5608 

	  0.02439 

�  -0.37878 

�  -0.6 

�  -0.6060 

The sensitivity indices of the basic reproductive number 

with respect to main parameters are arranged orderly in Table 

5. Those parameters that have positive indices i.e. 	�, � and 

		 show that they have great impact on expanding the disease 

in the community if their values are increasing. Due to the 

reason that the basic reproduction number increases as their 

values increase, it means that the average number of 

secondary cases of infection increases in the community. 
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Furthermore, those parameters in which their sensitivity 

indices are negative i.e. �, �  and�  have an influence of 

minimizing the burden of the disease in the community as 

their values increase while the others are left constant. And 

also as their values increase, the basic reproduction number 

decreases, which leads to minimizing then endemicity of the 

disease in the community. 

Furthermore, sensitivity testing of	�, �, �, ��, � shows the 

sensitivity of each compartment. This explain that susceptible 

individuals, drug resistance individuals and removed 

compartment are medium, i.e. which leads to minimizing the 

endemicity of the disease in the community. Furthermore, 

those variables 	�  and 	�  (in some interval) in which their 

status are maximum, i.e. which have an influence of 

minimizing the burden of the disease in the community, but 

passive immunity has minimum impact. 
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Figure 7. Sensitivity testing of�,�, �, �, ��, �. 

6. Discussions and Conclusions 

In this study, we proposed a mathematical modelling of 

HIV/AIDS transmission dynamics with drug resistance 

compartment. The qualitative analysis of the model shows 

that there exists a domain where the model is 

epidemiologically and mathematically well-posed. The 

stability analysis of the model was investigated using the 

threshold parameter that governs the disease transmission. 

The disease free and endemic equilibrium points was 

obtained and their stabilities are investigated. It was 

established that the disease free equilibrium is locally stable 

if the basic reproduction number ℜ) < 1 and unstable if the 

basic reproduction number 	ℜ) > 1 . The endemic 

equilibrium, which exist only when ℜ) > 1 , is globally 

asymptotically stable. The solution of the model equation is 

numerically supplemented and the sensitivity analysis of the 

model equation is analyzed to determine which parameter has 

high impact on the transmission of the diseases. 
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