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Abstract: Chlamydia Genital infection has been a global health issue especially among most developing countries. Although, 

a lot of researchers have modelled CT infection to determine the impact of different intervals between Chlamydia infection and 

the development of Pelvic Inflammatory Disease (PID) on the cost-effectiveness of screening and the use of Chlamydia 

vaccine. This paper seeks to model the dynamics of Chlamydia Trachomatis (CT) infection among females who were 

diagnosed of vaginal discharge and the likelihood of developing PID complications. The model was formulated using a sexual 

network to explore the relationship between Chlamydia infection through diagnosed vaginal infection and PID. A sample of 

147 females were diagnosed and screened of Chlamydia related symptoms on a routine check-up in the Tarkwa Nsuaem 

Municipality in the Western part of Ghana. Lyapunov functions was used to prove the necessary and sufficient conditions for 

Stability State of the system while Next Generation Method was also used to calculate the basic reproduction number (R0). The 

Stability Analysis of the Modified SIRS model shows that the system is locally and asymptotically stable at the Disease-Free 

Equilibrium (DFE) E0, when R0<1, and when R0>1, the Endemic Equilibrium (EE) E
*
, was found to be locally and 

asymptotically stable at certain conditions. It was observed that, as the distribution increases sharply at a given contact rate (β) 

of 0.05, many of the patients were infected within the first three days as compared to when the contact rate was 0.001. 

Moreover, at contact rates (β) of 0.5, R0 was greater than one, this shows how CT infection spreads in the population using 

parameter values in Table 1. Thus, the effects of change in the various initial conditions of the parameters (λ) and (β) on 

vaginal discharge and PID infections, turn to increase sharply at a higher infection rate for the first ten days of infection 

especially with vaginal discharge and then become stable over a period of time. This confirms the incubation period which is 

usually 7 to 10 days of infection. The paper concludes that, young women aged 18-24 years are more at risk of Chlamydia 

Trachomatis infection if diagnosed of vaginal discharge or PID and suggest early medication which is highly subsidised will 

help curb the spread of CT infection in the Municipality. 
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1. Introduction 

Chlamydia Trachomatis (CT) infection is arguably one of 

the most common Sexually-Transmitted Infections (STIs) 

worldwide [1, 2]. It is prevalent in both industrialised and 

developing countries worldwide. The World Health 

Organisation (WHO) estimated 100.4 million cases of CT 

infection world-wide in 2008 with 92 million cases in Africa. 

In 2005, Africa reported a prevalence rate of 3.9% among 

females and 2.4% in males. CT infection is observed to be 

higher in rural areas of some African countries [3]. According 

to Stamm [4], Chlamydia is more prevalent in heterosexuals 

than in homosexuals and has a higher incidence in those less 

than 20 years particularly among Africans. In Ghana, 

prevalence rate of CT infection ranges from 3% to 10.1% 
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among female sex workers in Accra [5, 6]. The incidence of 

the disease is not well-defined because in most countries CT 

infections are not noticeable, and mostly are asymptomatic in 

nature, and thus tend to escape detection [2, 7]. Untreated 

Chlamydia infection could lead to severe reproductive 

complications especially in females and about 10 - 20% of 

female infertility is associated with tubal factor infertility. 

Although CT infection will effectively clear in most women, 

the infection may persist in some and could ascend to the 

upper genital tract leading to Pelvic Inflammatory Disease 

(PID) infection [8]. 

1.1. Chlamydia Trachomatis Infections in Women 

The asymptomatic nature of Chlamydia Trachomatis (CT) 

infection in most women makes it difficult to attract adequate 

medication and in most cases could easily lead to severe 

reproductive complications especially in young adult 

females. Hence, about 10 - 20% of female infertility is 

associated with tubal factor infertility [8 ]. In 2011 50 million 

women were globally infected with Chlamydia trachomatis 

and 34 million in Sub-Saharan Africa and Southeast Asia 

(WHO; Adachi et al., [9, 10]) 

Genital CT infection in women usually appears in the form 

of vaginal discharge which develops into chronic subclinical 

infection. However, those at risk of the infection are found 

among young sexually active females who are virtually 

asymptomatic and so do not seek treatment [2]. According to 

Molano et al. [11] women infected with serogroup B and C 

types had a longer duration of genital chlamydial infection 

which untreated could usually leads to Pelvic Inflammatory 

Disease (PID). However, PID is known to be a syndrome 

associated with the transmission of micro-organisms from the 

vagina and cervix to the endometrium, salpingeal tubes and 

adjacent structures Hussen et al., [3]. Smith et al., [12] studied 

the progression from Chlamydia infection to PID 

complications and the cost-effectiveness of Chlamydia 

screening. However, in this paper, we modelled the 

progression of chlamydia infection from vaginal discharge to 

PID complications and minimising its spread through early 

medication. 

 

Figure 1. A Map Showing the Study Area. 
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1.2. Study Area 

The study area is the Tarkwa Nsuaem Municipality (TNM) 

which covers a land area of about 2,354 sq. km. It is situated 

in the central part of the region and shares common 

boundaries with Prestea-Huni Valley District to the north, 

with Ahanta West District to the south, with Nzema East 

district to the west and with Mpohor Wassa East District to 

the east. The Municipality lies in the evergreen rainforest belt 

and records a mean annual rainfall of 110mm. The 

Municipality has a total land area of 905.2 and it is one of the 

richest in terms mineral resource in Ghana. According to the 

Ghana population and housing census 2010, the total 

population of the Tarkwa Nsuaem Municipality is 90 477 

which represents 48.43% female and 51.57% male. One of 

the major economic activities in the area is surface mining 

and illegal small-scale mining popularly called “Galamsey”. 

There are multi-national companies engaged in the mining of 

gold and manganese. These companies, which are mostly 

manned by elite whites, employ Ghanaians from all over the 

country as well as natives of other African countries. Hence, 

the municipality consists of migrants of different cultures and 

backgrounds. The presence of these migrants attracts all 

kinds of sex workers from other neighboring countries. The 

activities of these sex workers increase the rate of CT 

infection and other STIs in the Municipality. The map of the 

study area is show in Figure 1. 

1.3. Sources of Data 

Study participants were selected from three hospitals in the 

Tarkwa Nsuaem Municipality (TNM). The hospitals include; 

Tarkwa Government hospital, Goldfield’s hospital and Ghana 

Manganese Company (GMC) Hospital Tarkwa. A laboratory 

screening test for 200 patients in the Municipality were 

employed to determine the presence of Chlamydia 

Trachomatis infection in symptomatic men and women in the 

municipality through screening [2]. 

2. Mathematical Modelling of Chlamydia 

Infection 

2.1. Model Formulation 

In this paper a deterministic mathematical model was 

formulated to describe the modelling of Chlamydia 

Trachomatis (CT) infection among female patients in TNM. 

This population is further compartmentalized into 

epidemiological classes as shown as Figure 2. 

The paper considered only female patients for constructing 

the compartmental model, the susceptible ( )S t  group consist 

of female patients screened for Chlamydia infection without 

treatment. Number of female patients infected ( )I t , reflect 

Chlamydia prevalence in the study population and ( )R t  

represents female patients who had recovered from CT 

infections due to treatment at rate ρ . The study differentiated 

between Chlamydia infection due to vaginal discharge and 

PID by categorising the infectious period into two stages; 

( )VDI  represents infected patients with vaginal discharge 

and ( )PIDI , indicates transmission from vaginal discharge to 

PID infection. Hence, infectious state, VD PIDI I I= + . 

 

Figure 2. Compartmental Model of Vaginal Discharge Dynamics. 

The detailed transitions between these four classes are 

depicted in figure 2. The susceptible class (S) is increased 

either by birth or immigration at a rate alpha ( α ). It is 

decreased through contact with an infected individual at rate 

beta (β), and by natural death at rate mu (µ). The infectious 

class ( I ) is generated through infection of the susceptible. 

The infectious class is of two folds, Chlamydia infection due 

to vaginal discharge symptoms which decreases by natural 

death at rate (µ) and further progresses to the second stage of 

PID complications as a result of untreated vaginal discharge 

at rate lambda ( )λ . Patients in this class recover with 

temporal immunity at rate delta (δ). The recruitment rate of 

the population is µ and the total number of new births is 

denoted by µN. The contact rate β, is the rate at which 

susceptible individuals come into contact with the infected 

population. The recovery rate γ, is the rate of progression 

from the infectious class to the recovery class. 

2.2. Model Assumptions 

This model assumes a homogeneous mixing of the 

population with individual patient having equal likelihood of 

being infected with Chlamydia, if they come into contact 

with an infected male. The study considered the following 

assumptions before the model equations were formulated. 

The population under consideration is fixed. In this model, a 

constant recruitment rate α  to the susceptible population per 

unit time is considered. There is a natural mortality rate (�	) 

in all the classes. Since the above models are dealing with 

humans, all the state variables are assumed to be positive, 

that is 0t ≥  It is also assumed that, the recruitment rate α  is 

equal to a natural death rate (�	) at the Disease-Free 

Equilibrium (DFE) point. 
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2.3. Equations of the Chlamydia T Model 

Using the above assumptions, the following systems of 

differential equations are formulated from the compartmental 

diagram above to mimic the dynamics of CT infection of a 

female patient as presented in Equation (1): 

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

VD

VD
VD VD

PID
VD PID

PID

dS t
S t I t S t R t

dt

dI t
S t I t I t

dt

dI t
I t I t

dt

dR t
I t R t

dt

α β µ ρ

β λ µ

λ δ µ

δ ρ µ

 = − − +

 = − +

 = − +


 = − +


         (1) 

The total population at time (t) is given by

( ) ( ) ( ) ( ) ( )VD PIDN t S t I t I t R t= + + + . The systems of ordinary 

differential equations formulated above are nonlinear with initial 

conditions 0(0)S s= , 1,0 2,0 0(0) , (0) , (0)VD PIDI i I i R ρ= = = . 

2.4. Methods and Materials 

This paper used next generating matrix method to 

determine the expression for the basic reproductive number 

( 0R ). The equilibrium stability of Ordinary Differential 

Equations (ODE’s) was determined by the sign of real part 

eigenvalues of the Jacobian matrix. Birkhof and Rota’s 

theorem among others and functions were used to develop 

the mathematical modelling of CT infections. 

2.5. Invariant Region 

It is assumed that all the state variables and parameters of 

the model are non-negative for all 0t ≥  since the model is 

dealing with population. The system of equations (1) was 

analysed in a suitable feasible region where all state variables 

are positive. 

Theorem 1. The solutions of the system of equations (1) 

are contained in the region φ = Φ  

Proof. Let [ ] 4
( ), ( ), ( ), ( )VD PIDS t I t I t R t +∈ℝ  be any solution 

of the system of Equations (1), with non-negative initial 

conditions. Then, it can be deduced that: 

( )
,

( )
,

dN t
N

dt

dN t
N

dt

α µ

µ α

≤ −

+ ≤
                              (2) 

Using the Integrating Factor, (IF), ,
dt t

IF e e
µ µ= =∫  

Multiplying (2) by the integrating factor we obtain; 

( )
( ) ,

( ) ,

t t t

t t

dN t
e N t e e

dt

d
Ne e

dt

µ µ µ

µ µ

µ α

α

+ ≤

≤
 

now integrating on both sides gives; 

( ) ,t tN t e e Cµ µα
µ

≤ +  

where C is the constant of integration. Hence, 

( ) ,tN t Ce µα
µ

−≤ +                              (3) 

Applying initial conditions, when 0t = , ( ) (0)N t N= . 

Implies, 

(0) ,N C
α
µ

− ≤                                 (4) 

Comparing (3) and (4) gives: 

( ) (0) ,tN t N e µα α
µ µ

− 
≤ + − 

 
                  (5) 

Then, applying Birkhof and Rota’s theorem on the 

differential inequality as t → ∞ , it can be obtained that 

( )0 N t
α
µ

≤ ≤ . Hence all feasible solutions of equation (1) 

enter the region 

( ), ( ), ( ), ( ) : ( )VD PIDS t I t I t R t N t
α
µ

 
Φ = ≤   

 
 

Hence the system of Equation (1) is both mathematically 

and epidemiologically meaningful. 

2.6. Positivity of Solutions 

The positivity and boundedness of solutions of Equation 

(1) is established, which imply that the model is well posed. 

Therefore, the discussion below focuses on the conditions 

under which the model being studied has non-negative 

solutions. 

Theorem 2. Given the initial conditions 

(0), (0), (0)VD PIDS I I  and (0)R , the system of differential 

equations (1) is non-negative, and its solutions remain 

bounded and are non-negative for all 0t ≥ . 

Proof. To prove the theorem, the model system of 

differential equations (1) will be used. The first equation of 

the model (1), can be deduced as: 

( )
( ) ( ) ( ) ( )VD

dS t
S t I t S t R t

dt
α β µ ρ= − − +  

To determine the positivity of ( )S t , consider

( )
( )

dS t
S t

dt
α µ≤ − , consequently, 

( )
( )

dS t
S t

dt
µ α+ ≤  



79 Christiana Cynthia Nyarko et al.:  Modelling Chlamydia Trachomatis Infection Among Young Women in Ghana:   

A Case Study at Tarkwa Nsuaem Municipality 

This is a first order homogeneous differential equation. It’s 

Integrating Factor (IF), thus
dt tIF e e

µ µ= =∫ . Multiplying by 

the IF  on both sides yields 

( )
( )t t tdS t

e S t e e
dt

µ µ µµ α+ ≤ . 

It follows that ( )t td e S t e dtµ µα  ≤  . Integrating on both 

sides yields 

( )t te S t e cµ µα
µ

≤ + , 

where c is the constant of integration, it then follows that 

( ) tS t e cµα
µ

−≤ +  

Applying initial conditions, when 0t = , ( ) (0)S t S= , then 

(0)S c
α
µ

− ≤ . 

Hence ( ) tS t ce µα
µ

−≤ + , then ( ) 0S t >  if 0t =  and 

t → ∞ . 

From equation two of the system of differential equations 

(1), it can be deduced that, to determine the positivity of 

( )VDI t , consider 

( )
( ) ( )VD

VD

dI t
I t

dt
µ γ≥ − + , consequently, 

( )
( ) ( ) 0VD

VD

dI t
I t

dt
µ γ+ + ≥ . 

This is a first order homogeneous differential equation. Its 

Integrating Factor (IF) 

( ) ( )dt tIF e e
µ γ µ γ+ += =∫  

Multiplying by the IF  on both sides yields 

( ) ( )( )
( ) ( ) 0t tVD

VD

dI t
e I t e

dt

µ γ µ γµ γ+ ++ + ≥ . 

It follows that 
( )( ( )) 0t

VDd e I t dtµ γ+ ≥ . Integrating on both 

sides yields 
( ) ( )t

VDe I t cµ γ+ ≥ , where c  is the constant of 

integration, it then follows that 
( )( ) t

VDI t e cµ γ− +≥ . Applying 

initial conditions, when 0t = , ( ) (0)VD VDI t I= , then 

(0)VDI c≥ . 

Hence 
( )( ) t

VDI t e µ γ− +≥ c, and (0) 0VDI ≥ , then ( ) 0VDI t ≥  

if 0t =  and t → ∞ . 

Similarly, for the remaining variables the same procedure 

can be used to show that they are positive for all 0t ≥ . 

2.6.1. Equilibrium Solutions (Steady States) 

The steady states of the system of differential Equation (1) 

is obtained by setting or equating each of the four nonlinear 

equations to zero as shown in Equation (6) 

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0

( ) ( ) ( ) 0

VD

VD VD

VD PID

PID

S t I t S t R t

S t I t I t

I t I t

I t R t

α β µ ρ
β λ µ
λ δ µ
δ ρ µ

− − + =
 − + =
 − + =
 − + =

              (6) 

Solving (6), there exist two equilibrium solutions: Disease 

free equilibrium and an Endemic equilibrium. 

2.6.2. Disease Free Equilibrium (DFE) Solution 

At the Disease-Free Equilibrium (DFE) all the system for 

the nonlinear differential equations is set to zero except the 

susceptible compartment which is assumed to be present as a 

result of birth, α  death λ  which is always part of the 

population. So, at the DFE, substituting 

( ) ( ) ( ) 0VD PIDI t I t R t= = =  in the system of Equation (1), the 

system reduces to: ( ) 0S tα µ− = which gives ( )S t
α
µ

=  

Therefore, the disease-free equilibrium (DFE) denoted by 

0E  of the system of differential equation (1) gives 

0 ( ( ), 0, 0,0) , 0, 0,0E S t
α
µ

 
= =  

 
 

The disease-free equilibrium will only exist when 0µ > . 

Again, when 1α µ= =  the DFE becomes (7): 

0 (1, 0, 0, 0)TE =                           (7) 

2.6.3. Endemic Equilibrium Solution 

The endemic equilibrium (EE) *E  of the model is also 

obtained by setting the system of equations again to zero. 

The DEE is given by the following equations 

{ }* * * * *( ), ( ), ( ), ( )VD PIDE S t I t I t R t=  

where 

*

* *

2
*

2

2
*

2

( )

( ) ( )

( )( )
( )

( )

( )
( )

( )

VD PID

PID

S t

I t I

I t

R t

µ λ
β
δ µ

λ αβ µλ µ ρ µ
βµ µδ λδ ρδ µ µλ µρ ργ

λδ αβ µλ µ
βµ µδ λδ ρδ µ µλ µρ ρλ

+=

= +

− − +=
+ + + + + +

− −=
+ + + + + +

 

The endemic equilibrium solution is always positive, as all 

the parameters are considered to be positive. The natural 

mortality rate µ , is considered constant throughout the 

model. 
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2.7. Determination of the Basic Reproduction Number (R0)  

In order to assess the stability 0( )E  of the system, the 

basic reproductive number 0( )R  was derived, using the next 

generation method by Diekmann and Heesterbeek [9] on the 

system of differential equations (1). The 0R  at the DFE was 

calculated by taking the dominant eigenvalue (spectral 

radius) of the matrix partial derivatives as presented in (8) 

1

0 0( ) ( )i i

j j

F V
E E

x x

−
  ∂ ∂
  
  ∂ ∂  

                      (8) 

where iF  is the rate of appearance of new infection in 

compartment iI , iV +
 is the transfer of women into 

compartment iI , iV −
 is the transfer of women out of the 

compartment iI  by all other means, jx  is 

[( ( ), ( ), ( ), ( )]TVD PIDS t I t I t R t and 0E  is the interior 

equilibrium. 

1

2

( ) ( )

,

0

VDf S t I t

f

β   
   =   

  
  

 

where 1, 2i =  

The associated matrix at the disease-free equilibrium is 

given by computing the infected compartments as presented 

in Equation (9) 

1 1
0 0

2 2
0 0

( ) ( )

( ) ( )

VD PID

j

VD PID

f f
E E

I I
F

F
x

f f
E E

I I

∂ ∂ 
 ∂ ∂ ∂
 = =

∂  ∂ ∂ 
 ∂ ∂ 

               (9) 

0
,

0 0

F

αβ
µ

 
 =  
 
 

 

and 

1

2

( )

( ) ( ) ( )

VD

VD PID

Iv

v I t I t

λ µ

λ δ µ

+  
   =   

   − + +   

 

The associated matrix at the disease-free equilibrium is 

given by Equation (10) 

1 1
0 0

2 2
0 0

( ) ( )

( ) ( )

VD PID

j

VD PID

v v
E E

I IV
V

v vX
E E

I I

∂ ∂ 
 ∂ ∂∂  = =
 ∂ ∂∂
 ∂ ∂ 

             (10) 

which gives, 

0

j

V
V

x

λ µ

λ δ µ

+ 
∂  = =  ∂  − + 

 

with 

( )( )

1

1
0

1
V

λ µ
λ

λ µ δ µ δ µ

−

 
 + =
 
 + + + 

 

therefore, 

( )( )

1

1
0

0

1
0 0

FV

αβ λ µ
µ

λ
γ µ δ µ δ µ

−

 
   +   
   =
   
   
   + + + 

 

1

0
( )

0 0

FV

αβ
µ λ µ−

 
 + =
 
 
 

                       (11) 

The spectral radius of matrix 1FV −  is 

1( )
( )

FV
βαρ

µ λ µ
− =

+
. Hence this is in line with theory that, 

the basic reproduction number R0 is the dominant eigenvalue 

of the matrix partial derivatives 1FV −  as presented in 

Equation (8) which is 0
( )

R
βα

µ λ µ
=

+
. 

2.8. Stability of Disease-Free Equilibria 

This section presents the stability of the disease-free 

equilibrium. The Lyapunov function is used to prove the 

local and global stabilities of equilibria. 

2.8.1. Local Asymptotic Stability of the Disease-Free 

Equilibrium 

Theorem 3. The Disease-Free Equilibrium (DFE) 0E  of 

the system of differential Equation (1) is locally 

asymptotically stable if 0 1R < . 

Proof. The Jacobian matrix J of the system of differential 

equations (1) is given by 

0

0 0

0 0

0 0

VD

VD

I S

I S
J

β µ β ρ
β β µ λ

λ δ µ
δ ρ µ

− − − 
 − − =
 − −
 

− − 

   (12) 

Evaluating matrix J at the disease-free equilibrium, 0E  
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gives Equation (13). 

0

0

0 0 0

0 0

0 0

EJ

βαµ ρ
µ

βα µ λ
µ

λ δ µ
δ ρ µ

 − − 
 
 

− −=  
 
 − −
 − − 

       (13) 

The characteristic equation resulting from the Jacobian 

matrix is 

4 3 2
3 2 1 0 0a a a aσ σ σ σ+ + + + =               (14) 

where ( ) ( )2 2
0a µλ βα µ δµ δρ ρµ µ= − + + + +  

( ) ( )( )2 2
1 2 2a

βαγ µ δµ δρ ρµ µ µλ µ βα δ µ ρ
µ

 
= + − + + + + + − + + 
 

 

( ) ( ) ( )2 2
2 2 2a

βαλ µ δ µ ρ µλ µ βα δµ δρ ρµ µ
µ

 
= + − + + + + − + + + + 
 

 

3 4a
βαδ λ µ ρ
µ

 
= + + + − 
 

 

The matrix 
0EJ  has eigenvalues 

1 0σ µ= − < , 2 0σ δ µ= − − < , 2 0σ ρ µ= − − < , 

4

( )βα µ λ µσ
µ

− + += −  

Clearly 1 2 3,   and σ σ σ are negative and for DFE to be 

locally asymptotically stable, if 0 1R <  all real eigenvalues 

must be negative [10]. Thus, it is required that 4 0σ < . 

Therefore, for local asymptotic stability at DFE we have; 

( )βα µ λ µ
µ

− + +− , 

This is possible provided 

( )βα µ λ µ< +  ⇒  1
( )

βα
µ λ µ

<
+

. But 0
( )

R
βα

µ λ µ
=

+
 

Hence, the disease-free equilibrium 0E  is locally 

asymptotically stable, since 0 1R < . 

2.8.2. Global Asymptotic Stability of the Disease-Free 

Equilibrium 

Theorem 4. The Disease-Free Equilibrium (DFE) 0E  of 

the system of differential Equation (1) is globally 

asymptotically stable whenever 0 1R < . 

Proof. Constructing the Lyapunov function of the form 

1 2 3 4VD PIDL u S u I u I u R= + + +ɺ  

1 2

3 4

( ) [ ( ) ]

[ ( ) ] [ ( ) ]

VD VD VD

VD PID PID

u SI S R u SI I

u I I u I R

α β µ ρ β λ µ
λ δ µ δ ρ µ

= − − + + − +
+ − + + − +

   (15) 

where 1 2 3, ,u u u  and 4u  are positive constants to be 

estimated. By principle of differentiation with respect to t , 

we have 

1 2

3 4

( ) [ ( ) ]

[( ( ) ] [ ( ) ]

VD VD VD

VD PID PID

L u SI S R u SI I

u I I u I R

α β µ ρ β λ µ
λ δ µ δ ρ µ

= − − + + − +
+ − + + − +

ɺ

 

1 1 1 1 2 2 2

3 3 3 4 4 4

VD VD VD VD

VD PID PID PID

L u u SI u S u R u SI u I u I

u I u I u I u I u R u R

α β µ ρ β λ µ
λ δ µ δ ρ µ

= − − + + − −
+ − − + − −

ɺ

 

2 1 3 2 4 3( ) ( ) ( )VD VD PIDL SI u u I u u I u uβ λ δ= − + − + −ɺ  

1 4 1 4 1 2 3( ) [ ( )]VD PIDR u u u u R u S u I u Iρ α µ− + − + + +  (16) 

Now if we choose the constants 1 2 3 4 1u u u u= = = =  we 

then obtain ( ) 0Nµ α− − < . Thus, the disease-free 

equilibrium of the Lyapunov function is globally 

asymptotically stable for 0 0.R <  

2.8.3. Stability of Disease Endemic Equilibria 

This paper presents the stability of the endemic 

equilibrium using the local stability as examined by 

Lyapunov functional methods. 

2.8.4. Local Asymptotic Stability of the Endemic 

Equilibrium 

Theorem 5. The Endemic Equilibrium *E  of the system of 

Equation (1) is locally asymptotically stable if 0 1R >  under 

some conditions. 

Proof. The variation matrix of the system of differential 

Equation (1) at 
* * * * *( ( ), ( ), ( ), ( ))VD PIDE S t I t I t R t=  is given 

by Equation (17), 

0

0 0

0 0

0 0

VD

VD
E

I S

I S
V

β µ µ ρ
β β µ λ

λ δ µ
δ ρ µ

∗

∗ ∗

∗ ∗

 − − −
 

− − =  − − 
 − − 

     (17) 

Therefore, the characteristic equation of *E
V  is given by 

(18): 

4 3 2
1 2 3 4 0A A A Aσ σ σ σ+ + + + =             (18) 

where, 

* *
1 ( ) 3VDA S Iβ µ λ δ ρ= − + + + + +

 

* * * * * *
2 ( 3 3 )4 3 2 1)VD VD VDA S S S I I Iλ δ µ ρ ρ λ µ µ δ λ ρ γδ λρ δρ= − − + + + + + − − + + +  
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( ) ( )* * * * * * * * * * *
3

2

(2 3 2 2 2 3 )

(3 3 1) (2 2 2 ) (2 )

VD VD VD VD VD VD VDA S S S I I I I S I I Iλµ δ µ ρ ρ λ µ δ ρδβ λβ δ ρ

µ δ ρ µ λµ δ µ ρ δρ µ λ

= − − + + + + + + + +

− + + + + + + +
 

* * * * * * 2 * 2 * * * *
4

3 2

( ) ( )

( ) ( )

A S S I I I S S I I I Iρλµ δ µ δ βµ µδ µ µ µλ µδ λδ

µ δ λ ρ µ ρµ µδ λδ µλ µ λδ

= − + + + + − + + + +

+ + + + + + + +
 

By the Routh-Hurwitz criterion [13], it follows that all eigenvalues of the characteristic Equation (19) has negative real parts 

if and only if 

1 1

1 3
2 1 2 3

2

1 3
2

3 2 4 1 2 3 1 4 3

1 3

1 3

2 4 2 2
4 1 2 3 4 1 3 4 3 4

1 3

2 4

0, 1,2,3, 4 , 0,

0
1

0

1 0

0

0 0

1 0
0

0 0

0 0

iA i D A

A A
D A A A

A

A A

D A A A A A A A A

A A

A A

A A
D A A A A A A A A A

A A

A A

> = = > 

= = − >



= = − − > 






= = − − > 




                                                (19) 

Therefore, the system of differential equations (1) again 

shows that the endemic equilibrium ( *E ) is locally 

asymptotically stable, when 0 1R > . Hence the conditions in 

(19) are satisfied. 

3. Analysis and Simulation of the SIRS 

(S IVG IPID RS) Model 

A numerical simulation of the system of Equation (1) was 

carried out using a set of parameter values in Table 1 to illustrate 

some of the analytical results of the study. The parameter values 

used were obtained from literature and other parameters that 

were not available in literature were estimated. The study used 

2010 Population and Housing Census for Ghana to estimate the 

average life expectancy for age groups from 10 years to 95+ 

years. The total population was 21,727,772 million with an 

average life expectancy of 64.22 years [14]. Therefore, the 

average overall mortality rate is estimated as

1 0.016
64.22

µ = =  with a recruitment rate of 0.04α = . 

3.1. Numerical Simulation of the Model  

The stability on the two equilibrium points: The disease-

free equilibrium state and the endemic state depend mainly 

on the basic reproductive ratio 0R . Therefore when

0 0.260 1R = < , the system is stable and when

0 1.235 1R = > , the system is unstable as contact rate 

increases to 0.8. The basic reproduction ratio ( 0R ) was 

simulated and calculated based on the estimated parameters 

from literature, see Table 1. 

Table 1. Description of Parameters Values for the Model. 

Parameter Description Parameter range Source 

� Recruitment rate 0.05 - 1.12 [15] 

� Contact rate 0.001- 0.5 Estimated 

� Rate at which infected individuals progress to PID complications 0.001- 0.7 Estimated 

� Natural mortality rate 0.016 Estimated 

 

3.2. Numerical Simulations of the Modified SIRS (S IVG 

IPID RS) Model 

The following graphs are the solution curves of the system 

of differential Equation (1) using a set of reasonable 

parameter values estimated in Table 1. 

3.3. Sensitivity Analysis of Model Parameters 

Sensitivity analysis was performed to determine the 

effect of small perturbations on parameter values in the 

initial value of the system. Changes in sensitive parameter 

values have significant effect on the spread of a disease 

from one person to another. A numerical sensitivity index 

was computed to help single out parameters that have a 

high impact on and which should be targeted by 

intervention strategies and its impact on the reproductive 

number ( 0R ). The sensitivity index is defined as the 

normalised forward sensitivity index of a variable, w, that 

differentiably depends on a parameter H; 

w
H

w H

H w

∂ϒ = ×
∂
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The sensitivity of 0R  to each of the four different 

parameters described in Table 1. Thus, the sensitivity index 

of 0R  with respect to β , is derived as 0 0

0

1.000
R R

R
β

β
β

∂
ϒ = × =

∂
 

other indices include 0R
αϒ , 0R

µϒ and 0R
λϒ . 

The various model parameters were examined against CT 

infection with vaginal discharge and PID, to check which of 

the parameters is more sensitive, see figures 4 to 7. 

 

Figure 3. Interaction curves of the Model. 

 

Figure 4. Infected Patients with Vaginal Discharge (VD) at various Initial 

Conditions of Lambda ( λ ). 

The system of equations (1) was simulated to depict the 

dynamics of the entire model given an initial population of 

ninety thousand four hundred and seventy - seven (90477) 

against fifty days’ time period. It was found that in figure 3, 

the susceptible population decreases considerably at the onset 

of the infection and moves asymptotically as time increases. 

The infectious class with vaginal discharge starts to increase 

exponentially and then falls gradually until it reaches its 

equilibrium position whilst, the infectious class with PID 

starts to increase slowly and then increases over time, and 

then maintains some level of equilibrium. Similarly, the 

recovery class increases slightly and maintains some level of 

stability as time increases. This depicts the likelihood of 

many of the patients diagnosed of vaginal discharge with CT 

infection progressing to PID infections and infecting other 

new partners through sexual contact or from mother to child. 

 

Figure 5. Infected Patients with PID at various Initial Conditions of Lambda 

( λ ). 

 

Figure 6. Infected Patients with Vaginal Discharge (VD) at various Initial 

Conditions of Beta (β). 

 

Figure 7. Infected Patients with PID at Various initial Conditions of Beta 

(β). 
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3.4. Discussions of the Model 

Sensitivity of the parameters were analysed and arranged 

from most sensitive to least. The most sensitive parameters 

are the recruitment rate and the contact rate ( α and β 

respectively) and the least sensitive parameter is the death 

rate (µ). The parameter β and λ  was used as control and 

simulate the dynamics of 0R . 

Figures 4 to 5 show the effect of the changes in the various 

initial conditions of the parameters, ( λ ) and (β), on 

Chlamydia infection with vaginal discharge and PID. It was 

observed that, as the distribution increases sharply at a given 

contact rate of 0.05, many of the patients were infected 

within the first three days compare to when the contact rate is 

0.001. In figures 4 and 5, the effects of change in the various 

initial conditions of the parameters ( λ ), on Chlamydia 

infection on the symptoms, turn to increase sharply at a 

higher infection rate for the first ten days of infection 

especially with vaginal discharge and then become stable 

over a period of time. This confirms the incubation period 

which is usually 7 to 10 days of infection. 

However, any attempt to reduce mostly the contact rate is 

marked by a reduction in the number of infected individuals. 

At 0.001 0.05toβ = , 0R < 1, it can be observed that, the 

infection minimizes drastically. Moreover, at contact rates of

0.5β = , 0 1R > , this shows how CT infection spreads in the 

population given parameter values in Table 1. 

4. Conclusion 

In this paper, a deterministic mathematical model for CT 

infection with respect to vaginal discharge and PID have 

been formulated and its dynamics duly investigated. The 

basic reproduction number was derived from the system of 

equations formulated. The disease-free equilibrium, 0E , was 

calculated and found to be locally asymptotically stable 

whenever 0R < 1. The endemic equilibrium E* was also 

found to be locally asymptotically stable whenever 0 1R > . 

Lyapunov functions were also used to establish that the 

steady states are globally asymptotically stable. The model 

was further simulated to ascertain the dynamics of CT 

infection and performed sensitivity analysis on the basic 

reproduction number from which it was concluded that the 

parameter β  is the most sensitive. Due to high rate of sex 

workers in mining communities, providing adequate 

healthcare centers for effective treatment of STIs and jobs for 

the youth will go a long way to minimize the rate of sexual 

partners and hence help curb the spread of CT infection in the 

Municipality and Ghana as a whole. 

5. Recommendation 

It is recommended that young women in Ghana especially 

those in the rural and mining communities should be 

educated more on genital infections by public health officials 

and stakeholders. 

The paper suggests an establishment of more Healthcare 

centers and free or highly subsidised treatment for STIs in all 

the Healthcare centers especially in rural and mining 

communities in Ghana to curb the spread of CT infections 

and other STIs. 

The paper further recommends that Mine officials should 

establish water closet toilet facilities with high hygienic 

observation measures for settlers in their catchment areas 

instead of pit-latrines. This would help minimize genital 

infections especially vaginal discharge and other infections 

associated with pit- latrine. 
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