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Abstract: In this paper, the authors prove norm inequalities for the intrinsic square functions and commutators generated by
this class operator and BMO function in variable Morrey spaces. This implies that the same norm inequalities for the Lusin
area integrals, the Littlewood-Paley operators and the continuous square functions. As application, we get the boundedness for
convolution Calderón-Zygmund operators in generalized Morrey spaces.
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1. Introduction
There is a greatly interested to study variable exponent

spaces and operators with variable parameters in last two
decade. Some researches are monographs about Lebesgue
spaces with variable exponents, for example, [1, 2]. Let p(·)
be a measurable function : Ω→ [1,∞). We suppose that

1 < p− 6 p(·) 6 p+ <∞, (1)

where p− = ess infx∈Ω p(x), p+ = ess supx∈Ω p(x).
We let L p(·)(Ω) be the set of functions f such that

ρp(·)(f) =

∫
Ω

|f(x)|p(x)dx <∞.

It is a Banach space equipped with the norm

‖f‖p(·) = inf

{
η > 0 : ρp(·)(f/η) 6 1

}
,

we denote the conjugate exponent by p′(x) = p(x)
p(x)−1 for

x ∈ Ω.
The Hölder inequality is valid in the form∫

Ω

|f(x)g(x)|dx 6

(
1

p−
+

1

p′−

)
‖f‖p(·)‖g‖p′(·).

Definition 1.1. Let Ω is open bounded set. We say that
p(·) satisfies the log-Hölder condition, and denote this by
p(·) ∈ LH(Ω), if there exists a constant C such that for all
x, y ∈ Ω, |x− y| < 1/2,

|p(x)− p(y)| 6 C

− ln |x− y|
.

Let M be the Hardy-Littlewood maximal operator, i.e., for
f ∈ L1

loc(Rn)

Mf(x) = sup
1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q containing x,
and the |Q| is the Lebesgue measure of Q ⊂ Rn. Let B(Ω)
be the set such that M is bounded on L p(·)(Ω). Diening [3]
proved that p(·) ∈ B(Ω) if p(·) ∈ LH(Ω), i.e M is bounded
on L p(·)(Ω). When Ω is unbounded to see [4].

Morrey spaces play an important role in study of local
properties of solutions of partial differential equations. These
spaces were introduced by Morrey [11] in 1938. The norm of
Morrey space is defined as follows:

‖f‖p,λ = sup
x, r>0

(
1

rλ

∫
Q

|f(y)|pdy
)1/p

,
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where Q is the cube with the center x and with side-length
r and its sides parallel to the coordinate axes, 0 < λ <
n and 1 6 p < ∞. Variable exponent Morrey spaces
were firstly introduced in [13] and also studied in [12].
Generalized variable exponent Morrey spaces L p(·),ω(Ω)
were introduced in [6]. They proved the boundedness of
maximal, singular, potential operator in variable exponent

Morrey spaces L p(·),ω(Ω). When ω(x, r) = r
λ(x)−n
p(x) ,

the L p(·),ω(Ω) are the variable exponent Morrey spaces
L p(·),λ(·)(Ω) in [8].

At the same time, the authors of [6] introduced
another generalized variable exponent Morrey spaces
L p(·),θ(·),ω(·)(Ω) in [7].

In this paper, we denotes Q̃ = Q ∩ Ω. Let ω(x, r) be a
positive measurable function on Ω × (0, `), ` = diam Ω and
1 6 p <∞.

The generalized variable exponent Morrey space
L p(·),ω(Ω) is equipped with the norm

‖f‖p(·),ω = sup
x∈Ω,r>0

r−
n
p(x)

ω(x, r)
‖f‖Lp(·)(Q̃(x,r)),

where we assume that

inf
x∈Ω,r>0

ω(x, r) > 0. (2)

It is the variable Morrey space L p(·),λ(·)(Ω) under the

choice ω(x, r) = r
λ(x)−n
p(x) , where λ(x) is a measurable

function on Ω with values in [0, n]. When p is constant, the
norm is defined by

‖f‖p,ω = sup
x∈Ω,r>0

1

ω(x, r)1/p
‖f‖Lp(Q̃(x,r)),

In this paper we mainly consider the boundedness of
intrinsic square functions in variable Morrey spaces. Let
u(x, t) = Pt ∗ f(x) be the Poisson integral of f, where
Pt(x) = cn

t
(t2+|x|2)(n+1)/2 with cn = Γ((n+1)/2)

π(n+1)/2 .

The cone of aperture β for any β > 0 is defined by

Γβ(x) = {(y, t) ∈ Rn+1
+ : |y − x| < βt}.

The corresponding Lusin area integral Sβ is defined by

Sβ(f)(x) =

(∫
Γβ(x)

|∇u(y, t)|2 dydt
tn−1

)1/2

.

The Littlewood-Paley g-function and g∗λ-function are
defined respectively by

g(f)(x) =

(∫ ∞
0

t|∇u(x, t)|2dt

)1/2

and

g∗λ(f)(x) =

(∫
Rn+1

+

(
t

t+ |x− y|

)nλ
|∇u(y, t)|2 dydt

tn−1

)1/2

, λ > 1.

Let ψt(x) = t−nψ(x/t) and ψ ∈ C∞0 (Rn) be real, radial,
supported in {x : |x| ≤ 1} and∫ ∞

0

|ψ̂(tξ)|2 dt
t

= 1

for all ξ 6= 0, where ψ̂ denotes the Fourier transform of ψ.
The continuous square functions Sψ,β and Littlewood-Paley

g-function gψ are defined by

Sψ,β(f)(x) =

(∫
Γβ(x)

|f ∗ ψt(y)|2 dydt
tn+1

)1/2

and

gψ(f)(x) =

(∫ ∞
0

|f ∗ ψt(y)|2 dt
t

)1/2

.

For 0 < α ≤ 1, let Cα be the family of function φ : Rn → R
such that it is supported in {x : |x| ≤ 1},

∫
φ(x)dx = 0, and

for all x and x′

|φ(x)− φ(x′)| ≤ |x− x′|α.

For f ∈ L1
loc(Rn) and (y, t) ∈ Rn+1

+ , set

Aα(f)(y, t) = sup
φ∈Cα

|f ∗ φt(y)|.

In [16], the intrinsic square function is defined by

Gβ,α(f)(x) =

(∫
Γβ(x)

(Aα(f)(y, t))2 dydt

tn+1

)1/2

,

when β = 1, denote G1,α by Gα.
The intrinsic Littlewood-Paley g-function and the intrinsic

g∗λ-function are defined respectively by

gα(f)(x) =

(∫ ∞
0

(Aα(f)(x, t))2 dt

t

)1/2

and
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g∗λ,α(f)(x) =

(∫
Rn+1

+

(
t

t+ |x− y|

)nλ
(Aα(f)(y, t))2 dydt

tn+1

)1/2

, λ > 1.

We recall several properties of the intrinsic square function, the proofs of them to see [16, 17].
(1) Gα is of weak type (1,1):

|{x ∈ Rn : Gα(f)(x) > σ}| 6 C(n, α)

σ
‖f‖L1(Rn); (3)

(2) If β > 1, then for all x ∈ Rn,

Gβ,α(f)(x) 6 C(α, β, n)Gα(f)(x); (4)

(3) If S is anyone the Littlewood-Paley operators defined above, then

S(f)(x) 6 CGα(f)(x), (5)

where the constant C is independent of f and x;
(4) The function Gα and gα are pointwise comparable with comparability constants only depending on α and n.
A locally integrable function b belongs to BMO if

‖b‖BMO = sup
Q

1

|Q|

∫
Q

|b(x)− bQ|dx <∞,

where bQ = 1
|Q|
∫
Q
b(x)dx and the supremum is taken over all cube Q whose sides parallel to the coordinate axes in Rn.

The commutators generated by BMO function b and intrinsic square functions are respectively defined by

[b,Gα](f)(x) =

(∫
Γ(x)

sup
φ∈Cα

∣∣∣∣ ∫
Rn

[b(x)− b(z)]φt(y − z)f(z)dz

∣∣∣∣2 dydttn+1

)1/2

,

[b, gα](f)(x) =

(∫ ∞
0

sup
φ∈Cα

∣∣∣∣ ∫
Rn

[b(x)− b(z)]φt(x− z)f(z)dz

∣∣∣∣2 dtt
)1/2

and

[b, g∗λ,α](f)(x) =

(∫
Rn+1

+

(
t

t+ |x− y|

)nλ
sup
φ∈Cα

∣∣∣∣ ∫
Rn

[b(x)− b(z)]φt(y − z)f(z)dz

∣∣∣∣2 dydttn+1

)1/2

.

In order to study the commutators, we need the following properties of BMO. For b ∈ BMO and 1 < p <∞, we get

‖b‖BMO ∼ sup
Q

(
1

|Q|

∫
Q

|b(x)− bQ|pdx
)1/p

(6)

For all nonnegative integers l, we obtain

|b2l+1Q − bQ| ≤ C(l + 1)‖b‖BMO. (7)

Wang [19] has estimated this class operator for ω is
increasing and there is a constant D, 1 6 D < 2n, such that,
for any r > 0, ω(2Q) 6 Dω(Q), where ω(Q) = ω(x, r), Q is
the cube with the center x and with side-length r and its sides
parallel to the coordinate axes. We can impose the following
condition on ω(x, r) as in [10].

Assume that there is a constant C such that, for any x ∈ Rn
and for any r > 0,

1/C 6 ω(x, t)/ω(x, r) 6 C, where r 6 t ≤ 2r (8)
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and ∫ ∞
r

ω(x, t)

tn+1
dt 6 C

ω(x, r)

rn
. (9)

Theorem 1.1. Assume that ω(x, r) satisfy the conditions (8)
and (9). Then (i) there is a constant Cp > 0 such that

‖S(f)‖p,ω 6 Cp‖f‖p,ω (10)

for f ∈ Lp,ω and 1 < p <∞;

(ii) there is a constant Cp > 0 such that for any σ > 0 and
any cube Q,

|{x ∈ Q : S(f)(x) > σ}|
ω(Q)

6
Cp
σp
‖f‖pp,ω (11)

for f ∈ Lp,ω and 1 < p <∞.
Based on Theorem 1.1, (10) holds for the classical

Calderón-Zygmund operators along with the Littlewood-Paley
technique in [15, 16, 17] developed by Wilson. Let

Tf(x) = lim
ε→0

Tεf(x) = lim
ε→0

f ∗Kε(x) and T ∗f(x) = sup
ε>0
|Tεf(x)|,

WhereKε(x) = K(x)χ{|x|>ε} andK is the standard kernel
with following properties

1. |K(x)| 6 C
|x|n ;

2.
∫
r<|x|<RK(x)dx = 0, 0 < r < R <∞;

3. |K(x)−K(x− y)| 6 C|y|δ
|x|n+δ , |x| > 2|y|, δ > 0.

Corollary 1.2 If ω satisfies the conditions (8) and (9). Then
for 1 < p <∞, there is a constantCp > 0 such that (10) holds
for T.

Corollary was also proved in [10].
Theorem 1.2. If ω satisfies the conditions (8) and (9). Then

(i) there is a constant Cp > 0 such that (10) holds for g∗λ,α
where 0 < α 6 1, λ > 3 and 1 < p <∞ ;
(ii) there is a constant Cp > 0 such that any cubeQ, (11) holds
for g∗λ,α, where 0 < α 6 1, λ > 3n+2α

n and 1 ≤ p <∞.
Theorem 1.3. If ω satisfies the conditions (8) and (9). Then

for 0 < α 6 1 and 1 < p < ∞, there is a constant Cp > 0
such that (10) holds for [b,Gα].

Theorem 1.4. If ω satisfies the conditions (8) and (9). Then
for 0 < α 6 1, λ > 3 and 1 < p < ∞, there is a constant
Cp > 0 such that (10) holds for [b, g∗λ,α].

We can obtain the following results by property (4),
Theorem 1.1 and Theorem 1.3.

Corollary 1.6 If ω satisfies the conditions (8) and (9). Then
(i) for 0 < α 6 1 and 1 < p < ∞, there is a constant Cp > 0
such that (10) holds for gα;

(ii) for 0 < α 6 1 and 1 6 p < ∞, there is a constant
Cp > 0 such that for any λ > 0 and any cube Q (11) holds for
gα.

Corollary 1.7 If ω satisfies the conditions (8) and (9). Then
for 0 < α 6 1 and 1 < p < ∞, there is a constant Cp > 0
such that (10) holds for [b, gα].

We have the following conclusion on variable exponent
generalized Morrey spaces L p(·),ω(Ω).

Theorem 1.5. Let Ω be an open bounded set, namely, ` =
diam Ω < ∞ and p(·) ∈ LH(Ω) satisfy assumption (1) and
the function ω1(x, r) and ω2(x, r) satisfy the condition∫ `

r

ω1(x, t)
dt

t
6 Cω2(x, r),

where C in independent of x and t. Then Gα is bounded from
L p(·),ω1(Ω) to L p(·),ω2(Ω).

Corollary 1.9 Let Ω be an open bounded set and p(·) ∈
LH(Ω) satisfy assumption (1), λ(x) > 0 and supx∈Ω λ(x) <
n. Then Gα is bounded in the space L p(·),λ(·)(Ω).

In the following, we introduce another generalized the
variable exponent Morrey spaces L p(·),θ(·),ω(·)(Ω).

Definition 1.2 Let ω(x, r) : Ω × (0, `) → R+ and
θ(r) : (0.`) → [1,∞] be measurable functions. The space
L p(·),θ(·),ω(·)(Ω) is set of functions with the finite norm

‖f‖L p(·),θ(·),ω(·)(Ω) = sup
x∈Ω

∥∥∥∥ω(x, r)

r
n
p(x)

‖f‖Lp(·)(Q̃(x,r))

∥∥∥∥
Lθ(·)(0,`)

.

The generalized Morrey space L p,θ,ω with constant exponent first appeared in [11]. If θ(r) =∞, we can write

L p(·),∞,ω(·)(Ω) = L p(·), 1
ω(·) (Ω).

In addition, we assume that ω(x, r) satisfies the condition

sup
x∈Ω
‖ω(x, ·)‖Lθ(·)(0,`) <∞. (12)

Theorem 1.6 Assume p ∈ LH(Ω) satisfy (1), ` = diam Ω <∞ and Let

1 < θ−1 6 θ1(t) 6 θ+
1 <∞, 0 < t < `,

1 < θ−2 6 θ2(t) 6 θ+
2 <∞, 0 < t < `.
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if there exists δ > 0 such that

θ1(t) 6 θ2(t)

for t ∈ (0, δ), θ1 and ω1 satisfy (12) and

sup
0<t<δ,x∈Ω

∫ t

0

ω2(x, ξ)θ2(ξ)

(∫ δ

t

dr

[rω1(x, r)][θ̃(ξ)]′

) θ2(ξ)

[θ1(ξ)]′

dξ <∞,

where θ̃ = infs∈(ξ,`) θ1(s), then Gα is bounded from L p(·),θ1(·),ω1(·)(Ω) to L p(·),θ2(·),ω2(·)(Ω).

2. Preliminaries

A nonnegative locally integrable function w belongs to Ap (p > 1) if

sup
Q

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)1−p′dx

)p−1

<∞,

where p′ is the conjugate index of p i.e. 1/p+ 1/p′ = 1.
Lemma 2.1. [18] The intrinsic square function Gα, the Lusin area integral Sβ , the Littlewood-Paley function g, the continuous

square functions Sψ and gψ are bounded on Lp(w) for w ∈ Ap (1 < p <∞).
Lemma 2.2. [20] Let 0 < α 6 1, 1 < p 6 ∞ and ω ∈ Ap. Then the commutators [b,Gα] and [b, g∗λ,α] are bounded from

Lp(w) into itself whenever b ∈ BMO.
Lemma 2.3. [19] Let 0 < α 6 1 and λ > (3n + 2α)/n. Then for any σ > 0, there exists a constant C > 0 independent of f

and σ > 0, such that

|{x ∈ Rn : g∗λ,α(f)(x) > σ}| 6 C

σ

∫
Rn
|f(x)|dx.

An important extrapolation theorem was introduced in [5].
Lemma 2.4. Let f and g be non-negative and measurable functions, assume that there exists a constant C such that∫

Ω

f(x)qw(x)dx 6 C

∫
Ω

g(x)qw(x)dx

holds for some 1 < q <∞ and for every w ∈ Aq. Then

‖f‖p(·) 6 C‖g‖p(·) (13)

for p(·) ∈ LH(Ω).

We can obtain the following conclusion by Lemma 2.1 and
Lemma 2.4.

Theorem 2.1. (13) holds for the intrinsic square function
Gα(f) (0 < α 6 1), the Lusin area integral Sβ(f),
the Littlewood-Paley function g(f), the continuous square
functions Sψ(f) and gψ(f) for f ∈ L p(·)(Ω) and p(·) ∈
LH(Ω).

The Littlewood-Paley g∗λ-function has been discussed in [5].
For commutators, we have the following theorem by using
Lemma 2.2 and Lemma 2.4.

Theorem 2.2. (13) holds for [b,Gα](f) and [b, g∗λ,α](f) for
f ∈ L p(·)(Ω) and p(·) ∈ LH(Ω).

We will use the following estimate.
Lemma 2.5[9] Suppose that 1 6 p− 6 p(x) 6 p+ < ∞,

p(·) ∈ LH(Ω) and

sup
x∈Ω

ν(x) <∞, inf
x∈Ω

[n+ ν(x)p(x)] > 0.

Then

‖|x− ·|ν(x)χQ̃(x,r)‖p(·) 6 Crν(x)+ n
p(x) , x ∈ Ω, 0 < r < ` = diam Ω,

where C is independent of x and r.
[6, 7] assert that the constant C in Lemma 2 can be express as

C = C0`
n( 1
p−
− 1
p+) ,



20 Panwang Wang and Zongguang Liu: Boundedness of Littlewood-Paley Operators in Variable Morrey Spaces

where C0 is independent of Ω.
Lemma 2.5. [21] Let θ(t) and r(t) be measurable functions on I = (0, `) such that

1 < inf
t∈(0,`)

θ(t), sup
t∈(0,`)

r(t) <∞, θ(t) 6 r(t), t ∈ (0, `).

if

sup
0<t<l

∫ t

0

v(ξ)r(ξ)
(∫ `

t

ω[θ̃(ξ)]′(r)dr

) r(ξ)

[θ(ξ)]′

dξ <∞,

then Hv,ω is bounded from Lθ(·)(0, `) to Lr(·)(0, `), where θ̃ = infs∈(ξ,`) θ(s) and Hv,ω is the weighted Hardy type operator

Hv,ω(f)(t) = v(t)

∫ `

t

f(ξ)ω(ξ)dξ.

Lemma 2.6. [7] For p(·) ∈ LH the embeddings

L∞(Ω) ↪→ L p(·),θ(·),ω(·)(Ω) ↪→ Lp(·)(Ω)

holds if (12) is satisfied and there exist a δ ∈ (0, `) such that

sup
x∈Ω
‖ω(x, ·)‖Lθ(·)(δ,`) > 0.

Lemma 2.7. [10] Assume that ω(x, r) satisfy the conditions (8) and (9).
Then for 1 6 q < p <∞, there is a constant Cp,q > 0 such that

‖Mqf‖p,ω 6 Cp,q‖f‖p,ω for f ∈ Lp,ω,

where (M(|f |)q(x))1/q = Mqf(x) and M is the Hardy-Littlewood maximal operator.

3. Proof of the Main Results

Proof of Theorem 1.2: By (4) and (5), it is enough to prove Theorem 1.1 for Gα(f). (i) Let Q be a cube of Rn, with the
center x0 and side-length r. Decompose f = fχ2Q + fχ(2Q)c and denote fχ2Q by f1 and fχ(2Q)c by f2, χ2Q denotes the
characteristic function of set 2Q. Since Gα(f) is a sublinear, we have

(
1

ω(x0, r)

∫
Q

|Gα(f)(x)|pdx
)1/p

6

(
1

ω(x0, r)

∫
Q

|Gα(f1)(x)|pdx
)1/p

+

(
1

ω(x0, r)

∫
Q

|Gα(f2)(x)|pdx
)1/p

= I1 + I2.

Lemma 2.1 and (8) imply

I1 =
1

ω(x0, r)1/p

(∫
Rn
|Gα(f1)(x)|pdx

)1/p

6 C
1

ω(x0, 2r)1/p

(∫
2Q

|f(x)|pdx
)1/p

6 C‖f‖p,ω

For any x ∈ Q, (y, t) ∈ Γ(x) and z ∈ (2l+1Q \ 2lQ) ∩Q(y, t), l ∈ Z+, then

2t > |x− y|+ |y − z| > |x− z| > |z − x0| − |x− x0| > 2l−1r.
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By the Minkowski inequality and Hölder inequality, we have

|Gα(f2)(x)|

=

(∫
Γ1(x)

(Aα(f2)(y, t))2 dydt

tn+1

)1/2

=

(∫
Γ1(x)

( sup
φ∈Cα

|f ∗ φt(y)|)2 dydt

tn+1

)1/2

6 C

(∫ ∞
2l−2r

∫
|x−y|<t

(
t−n

∫
(2Q)c∩{z:|y−z|6t}

|f(z)|dz
)2

dydt

tn+1

)1/2

6 C

(∫ ∞
2l−2r

∫
|x−y|<t

(
t−n

∞∑
l=1

∫
(2l+1Q\2lQ)

|f(z)|dz
)2

dydt

tn+1

)1/2

6 C

( ∞∑
l=1

∫
(2l+1Q\2lQ)

|f(z)|dz
)(∫ ∞

2l−2r

dt

t2n+1

)1/2

6 C

∞∑
l=1

1

|2l+1Q|

∫
(2l+1Q\2lQ)

|f(z)|dz

6 C

∞∑
l=1

ω(x0, 2
l+1r)1/p

|2l+1Q|1/p

(
1

ω(x0, 2l+1r)

∫
2l+1Q

|f(z)|pdz
)1/p

.

It is easy to know that

ω(x0, 2
l+1r)

|2l+1Q|
is comparable to

∫ 2l+1r

2lr

ω(x0, t)

tn+1
dt

by (8) and (9). So we get

|Gα(f2)(x)|p 6 C‖f‖pp,ω
∞∑
l=1

∫ 2l+1r

2lr

ω(x0, t)

tn+1
dt

6 C‖f‖pp,ω
∫ ∞
r

ω(x0, t)

tn+1
dt

6 C‖f‖pp,ω
ω(x0, r)

rn
.

Hence

I2 6 C‖f‖p,ω.

Combining the estimate for I1 and I2, we obtain the (10).
(ii) For σ > 0, by (3) and (10), we get (11). 2

In order to prove 1.2 we need the following estimate.
Proposition 3.1. Let 0 < θ 6 1. Assume that ω satisfies

1/C 6 ω(x, t)/ω(x, r) 6 C, for r 6 t 6 2r

and ∫ ∞
r

ω(x, t)

tnθ+1
dt 6 C

ω(x, r)

rnθ
.

Then for 1 6 p <∞ there is a constant C > 0 such that∫
Q

|GN (f)(x)|pdx 6 Cω(Q)‖Sψ,β(f)(x)‖pp,ω
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for f ∈ Lp,ω, any cube Q, β and N large enough, where GN is the grand maximal function .
The following important weight norm inequality is proved in [15]:∫

Rn
|GN (f)(x)|pV (x)dx 6 C

∫
Rn

(Sψ,β(f)(x))pM̃V (x)dx. (14)

That is for 0 < p < ∞, there exits a ”Maximal operator” M̃ such that (14) is valid for f ∈ Lp(Rn), any nonnegative
V ∈ L1

loc(Rn), appropriate ψ and large enough β and N with a constant C which is independent V and f. For every p, we can
take M̃ = Mk (k > 1); if k = 1, (14) holds for p ∈ (0, 2).

Proof of proposition 3.1: Taking V = χQ in (14), we have∫
Rn
|GN (f)(x)|pχQ(x)dx 6 C

∫
Rn

(Sψ,β(f)(x))pM̃χQ(x)dx.

Since χQ is the characteristic function of Q, M̃χQ(x) 6 1. And for x ∈ 2l+1Q \ 2lQ, M̃χQ(x) is comparable to 2−ln,
l ∈ Z+.

Therefore ∫
Q

|GN (f)(x)|pdx

6 C

[ ∫
2Q

(Sψ,β(f)(x))pdx+

∞∑
l=1

∫
(2l+1Q\2lQ)

2−lnθ(Sψ,β(f)(x))pdx

]

6 C

[
ω(2Q) +

∞∑
l=1

2−lnθω(2l+1Q)

]
‖Sψ,β(f)‖pp,ω

6 Crnθ
∞∑
l=0

ω(x0, 2
lr)

(2lr)nθ
‖Sψ,β(f)‖pp,ω.

Since

ω(x0, 2
l+1r)

|2l+1Q|nθ
is comparable to

∫ 2l+1r

2lr

ω(x0, t)

tnθ+1
dt,

we get ∫
Q

|GN (f)(x)|pdx 6 Crnθ
∫ ∞
r

ω(x0, t)

tnθ+1
dt‖Sψ,β(f)‖pp,ω

6 Cω(Q)‖Sψ,β(f)‖pp,ω. 2

Proof of 1.2: Wislon ([16, 17]) prove that there exists α 6 1 which depends on T such that for all x ∈ Rn,

Sψ(Tf)(x) 6 c(T, ψ, n)Gα(f)(x).

By the same method yields

Sψ,β(Tf)(x) 6 c(T, ψ, n, β)Gα(f)(x), (15)

for β > 1.
The Proposition 3.1 tells us

‖GN (f)‖p,ϕ 6 C‖Sψ,β(f)‖p,ω (16)

for large enough β and N.
It is well known that for all x ∈ Rn [22, pp. 67-68],

T ∗f(x) 6 C(n, T )(GN (Tf)(x) +Mf(x)).
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Combining this with (15) and (16), we have

‖T ∗f‖p,ω 6 C
(
‖Sψ,β(Tf)‖p,ω + ‖Mf‖p,ω

)
6 C

(
‖Gα(f)‖p,ω + ‖Mf‖p,ω

)
.

This estimate along with Theorem 1.1 and Lemma 2.7, (10) yields for T. 2

Proof of Theorem 1.2 : (i) As before, we set f = f1 + f2, f1 = fχ2Q. From the definition of g∗λ,α, we can easily deduce that(
1

ω(x0, r)

∫
Q

(g∗λ,α(f)(x))pdx

)1/p

6
C

ω(x0, r)1/p

[(∫
Q

(Gα(f)(x))pdx

)1/p

+

∞∑
j=1

2−jλn/2
(∫

Q

(G2j ,α(f)(x))pdx

)1/p]

6
C

ω(x0, r)1/p

[(∫
Q

(Gα(f)(x))pdx

)1/p

+

∞∑
j=1

2−jλn/2
(∫

Q

(G2j ,α(f1)(x))pdx

)1/p

+

∞∑
j=1

2−jλn/2
(∫

Q

(G2j ,α(f2)(x))pdx

)1/p]

=I0 +

∞∑
j=1

2−jλn/2I1
j +

∞∑
j=1

2−jλn/2I2
j .

By Theorem 1.1, we know that I0 6 C‖f‖p,ω. We can get the following estimate for I1
j from [19], i.e.

I1
j 6 C‖f‖p,ω(2jn/2 + 2jn/p)

ω(x0, 2r)
1/p

ω(x0, r)1/p
.

We obtain

I1
j 6 C‖f‖p,ϕ(2jn/2 + 2jn/p)

by (8).
The estimate of I(2)

j is similar to I2,

G2j ,α(f2)(x)dx

6C23jn/2
∞∑
l=1

ω(x0, 2
l+1r)1/p

|2l+1Q|1/p

(
1

ω(x0, 2l+1r)

∫
2l+1Q

|f(z)|pdz
)1/p

6C23jn/2‖f‖p,ω
(∫ ∞

r

ω(x0, t)

tn+1
dt

)1/p

6C23jn/2‖f‖p,ω
ω(x0, r)

1/p

rn/p
,

hence

I
(2)
j 6 C23jn/2‖f‖p,ω.

Therefore (
1

ω(x0, r)

∫
Q

(g∗λ,α(f)(x))pdx

)1/p

6C‖f‖p,ω(1 +

∞∑
j=1

2−jλn/223jn/2 +

∞∑
j=1

2−jλn/22jn/p)

6C‖f‖p,ω
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for λ > 3 > 2/p.

(ii)For σ > 0, by Lemma 2.3 and the estimate of I(2)
j , the (11) is valid to g∗λ,α. 2

Proof of Theorem 1.3 : Fix a cube Q of Rn whose center is x0 and edges have length r. Decompose f = fχ2Q + fχ(2Q)c and
denote fχ2Q by f1 and fχ(2Q)c by f2.(

1

ω(x0, r)

∫
Q

|[b,Gα](f)(x)|pdx
)1/p

6

(
1

ω(x0, r)

∫
Q

|[b,Gα](f1)(x)|pdx
)1/p

+

(
1

ϕ(x0, r)

∫
Q

|[b,Gα](f2)(x)|pdx
)1/p

=II1 + II2.

By Lemma 2.2 we get

II1 6 C
1

ω(x0, r)1/p

(∫
Rn
|[b,Gα](f1)(x)|pdx

)1/p

6 C
‖b‖BMO

ω(x0, 2r)1/p

(∫
2Q

|f(x)|pdx
)1/p

6 C‖f‖p,ω‖b‖BMO.

Now we estimate II2. For any x ∈ Q, (y, t) ∈ Γ(x), since |b(x)− b(z)| 6 |b(x)− bQ|+ |b(z)− bQ|, we have

|[b,Gα](f2)(x)| 6 |b(x)− b(z)|Gα(f2)(x) +

(∫
Γ

sup
φ∈Cα

∣∣∣∣ ∫
Rn

[b(z)− bQ]φt(y − z)f(z)dz

∣∣∣∣2 dydttn+1

)1/2

= II11 + II21.

In the proof of Theorem 1.1, we get that for any x ∈ Q,

|Gα(f2)(x)|p 6 C‖f‖pp,ω
ω(x0, r)

rn
.

And by the (6), we obtain

1

ω(x0, r)

∫
Q

IIp11dx 6 C‖f‖pp,ω
1

|Q|

∫
Q

|b(x)− bQ|pdx

6 C‖f‖pp,ω‖b‖
p
BMO.

Next we deal with II21. It is similar to |Gα(f2)(x)|,

II21 6

(∫
Γ1(x)

sup
φ∈Cα

(∫
Rn
|(b(z)− bQ)φt(y − z)f(z)|dz

)2
dydt

tn+1

)1/2

6C

(∫
Γ1(x)

(
t−n

∞∑
l=1

∫
{2l+1Q\2lQ}∩{z:|y−z|6t}

|b(z)− b2l+1Q||f(z)|dz
)2

dydt

tn+1

)1/2

+C

(∫
Γ1(x)

(
t−n

∞∑
l=1

∫
{2l+1Q\2lQ}∩{z:|y−z|6t}

|b2l+1Q − bQ||f(z)|dz
)2

dydt

tn+1

)1/2
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6C
∞∑
l=1

1

|2l+1Q|

∫
(2l+1Q\2lQ)

|b(z)− b2l+1Q||f(z)|dz

+ C

∞∑
l=1

|b2l+1Q − bQ|
|2l+1Q|

∫
(2l+1Q\2lQ)

|f(z)|dz

6‖f‖p,ω
(∫ ∞

r

ω(x0, t)

tn+1
dt

)1/p(
1

|Q|

∫
Q

|b(x)− bQ|p
′
dx

)1/p′

+ C‖f‖p,ω
∞∑
l=1

|b2l+1Q − bQ|ω(x0, 2
l+1r)1/p

|2l+1Q|1/p
.

Applying (6), (7) and ω(x0, 2
l+1r) ∼ ω(x0, r), we have

II21 6 C‖f‖p,ω‖b‖BMO
ω(x0, r)

1/p

rn/p
+ C‖f‖p,ω‖b‖BMO

ω(x0, r)
1/p

rn/p

∞∑
l=1

l + 1

2(l+1)n/p

6 C ′‖f‖p,ω‖b‖BMO
ω(x0, r)

1/p

rn/p
.

Hence

1

ω(x0, r)

∫
Q

IIp21dx 6 C‖f‖pp,ω‖b‖
p
BMO.

Combining II11 and II21, so

II2 6 C‖f‖p,ω‖b‖BMO.

Thus (9) holds for [b,Gα]. 2

Proof of Theorem 1.4 : By Lemma 2.2, we can use the same arguments in the proof of Theorem 1.2 (i) and Theorem 1.3 to
get the conclusion of Theorem 1.4. 2

We use the following estimate to show the Theorem 1.5 and Theorem .
Proposition 3.2 Let Ω be bounded, ` = diam Ω and p ∈ HL(Ω) satisfy (1). Then

‖Gαf‖Lp(·)(Q̃(x,t)) 6 Ct
n
p(x)

∫ `

t

r−
n
p(x)
−1‖f‖Lp(·)(Q̃(x,r))dr, 0 < t < δ

for f ∈ Lp(·)(Ω), where C is independent of f, x ∈ Ω and t.
Proof Proposition 3.2: Let Q be a cube of Rn, the center is x0 and side length is t. Decompose f = fχ2Q̃ + fχ(2Q̃)c and

denote fχ2Q̃ by f1 and fχ(2Q̃)c by f2, χ2Q̃ denotes the characteristic function of set 2Q̃. Since Gα is a sublinear, we have

‖Gα(f)‖Lp(·)(Q̃(x0,t))
6 ‖Gα(f1)‖Lp(·)(Q̃(x0,t))

+ ‖Gα(f2)‖Lp(·)(Q̃(x0,t))
.

We get

‖Gα(f1)‖Lp(·)(Q̃(x0,t))
6 ‖Gα(f1)‖Lp(·)(Ω) 6 C‖f1‖Lp(·)(Ω) = C‖f‖Lp(·)(Q̃(x0,2t))

by Theorem 2.1.
Then we easily obtain

‖Gα(f)‖Lp(·)(Q̃(x,t)) 6 Ct
n
p(x)

∫ `

2t

r−
n
p(x)
−1‖f‖Lp(·)(Q̃(x,r))dr

6 Ct
n
p(x)

∫ `

t

r−
n
p(x)
−1‖f‖Lp(·)(Q̃(x,r))dr.



26 Panwang Wang and Zongguang Liu: Boundedness of Littlewood-Paley Operators in Variable Morrey Spaces

Next we estimate Gα(f2). It is similar to the second estimate in proof (i) of Theorem 1.1. We have

|Gα(f2)(x)| 6 C

∞∑
l=1

1

|2l+1Q|

∫
Ω∩(2l+1Q\2lQ)

|f(z)|dz

6 C

∫
Ω\Q̃(x0,2t)

|f(z)|
|x0 − z|n

dz.

Choosing ε > n
p−
, by the Hölder inequality of variable exponent and Lemma 2 we have∫

Ω\Q̃(x0,t)

|f(z)|
|x0 − z|n

dz

6ε
∫

Ω\Q̃(x0,t)

|f(z)|
|x0 − z|n−ε

(∫ `

|x−y|

1

sε+1
ds

)
dz

6ε
∫ `

t

1

sε+1
ds

∫
Ω∩{y:|x0−z|6s}

|f(z)|
|x0 − z|n−ε

dz

6C
∫ `

t

1

sε+1
‖f‖Lp(·)(Q̃(x0,s))

‖|x0 − z|−n+ε‖Lp′(·)(Q̃(x0,s))
ds

6C
∫ `

t

s−
n
p(x)
−1‖f‖Lp(·)(Q̃(x0,s))

ds.

Hence

|Gα(f2)(x)| 6 C

∫ `

2t

s−
n
p(x)
−1‖f‖Lp(·)(Q̃(x0,s))

ds

6 C

∫ `

t

s−
n
p(x)
−1‖f‖Lp(·)(Q̃(x0,s))

ds.

By Lemma 2 and the Hölder inequality of variable exponent again, we get

‖Gα(f2)‖Lp(·)(Q̃(x0,t))
6 C

∫ `

t

s−
n
p(x)
−1‖f‖Lp(·)(Q̃(x0,s))

ds‖1‖Lp(·)(Q̃(x0,t))

6 Ct
n
p(x)

∫ `

t

s−
n
p(x)
−1‖f‖Lp(·)(Q̃(x0,s))

ds. 2

Proof of Theorem 1.5 :

‖Gα(f)‖p(·),ω2
= sup
x∈Ω,r>0

r−
n
p(x)

ω2(x, r)
‖Gα(f)‖Lp(·)(Q̃(x,r)).

We just consider r ∈ (0, δ) under the assumption of (2). Applying Proposition 3.2, we have

sup
x∈Ω,r∈(0,δ)

r−
n
p(x)

ω2(x, r)
‖Gα(f)‖Lp(·)(Q̃(x,r))

6C sup
x∈Ω,r>0

1

ω2(x, r)

∫ `

r

s−
n
p(x)
−1‖f‖Lp(·)(Q̃(x,s))ds

6C‖f‖p(·),ω1

1

ω2(x, r)

∫ `

r

ω1(x, s)

s
ds

6C‖f‖p(·),ω1
2
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Proof of Theorem :

‖Gα(f)‖L p(·),θ(·),ω(·)(Ω) = sup
x∈Ω

∥∥∥∥ω(x, r)

r
n
p(x)

‖Gα(f)‖Lp(·)(Q̃(x,r))

∥∥∥∥
Lθ(·)(0,`)

6 sup
x∈Ω

∥∥∥∥ω(x, r)

r
n
p(x)

‖Gα(f)‖Lp(·)(Q̃(x,r))

∥∥∥∥
Lθ(·)(0,δ)

+ sup
x∈Ω

∥∥∥∥ω(x, r)

r
n
p(x)

‖Gα(f)‖Lp(·)(Q̃(x,r))

∥∥∥∥
Lθ(·)(δ,`)

= I1 + I2

The estimate of I2 can directly follow from the Lemma 2.6.

I2 6 C‖Gα(f)‖L p(·)(Ω)‖ω2(x, ·)‖Lθ(·)(δ,`)
6 C‖Gα(f)‖L p(·)(Ω)

6 C‖f‖L p(·)(Ω) 6 C‖f‖L p(·),θ(·),ω(·)(Ω).

For t ∈ (0, δ), We find

I1 6 C

∥∥∥∥ω2(x, t)

∫ `

t

r−
n
p(x)
−1‖f‖Lp(·)(Q̃(x,r))dr

∥∥∥∥
Lθ(·)(δ,`)

.

We splitting the integral with respect to r into two integrals over (0, δ) and (δ, `). The estimate of integral over (δ, `) is obtained
as I2 and the estimate of integral over (0, δ) is used by Lemma 2.5. In addition, by the Lemma 2.6 we get

I1 6 C‖f‖L p(·),θ(·),ω(·)(Ω) + sup
x∈Ω

∥∥∥∥ω(x, r)

r
n
p(x)

‖f‖Lp(·)(Q̃(x,r))

∥∥∥∥
Lθ(·)(0,δ)

6 C‖f‖L p(·),θ(·),ω(·)(Ω).

Acknowledgements
This work is supported by NNSF-China (Grant

No.11671397 and 51234005) and Hebei Province introduced
overseas student support projects (Grant No. C20190365).

References
[1] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue

spaces: Foundations and Harmonic Aanlysis. In: Applied
and Numberical Harmonic Analysis, Springer, New York,
2013.

[2] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka,
Lebesgue and Sobolev Spaces with Variable Exponents:
Lecture Notes in Math., Vol.2017, Spring-Verlag, 2011.

[3] L. Diening, Maximal functions on generalized Lp(x)

spaces, Math. Inequal Appl. 7 (2004), 245-253.
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