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Abstract: In this paper, the authors prove norm inequalities for the intrinsic square functions and commutators generated by
this class operator and BMO function in variable Morrey spaces. This implies that the same norm inequalities for the Lusin
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convolution Calder6n-Zygmund operators in generalized Morrey spaces.
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1. Introduction

There is a greatly interested to study variable exponent
spaces and operators with variable parameters in last two
decade. Some researches are monographs about Lebesgue
spaces with variable exponents, for example, [1, 2]. Let p(+)
be a measurable function : 2 — [1, 00). We suppose that

L<p_ <p() <py <oo, (1)

where p_ = essinfycq p(z), p4+ = esssup,cq p(x).
We let £P() () be the set of functions f such that

P = [ 1@ e < oc.
It is a Banach space equipped with the norm
Il = inf {0 oy (/) < 1],

p(z)
p(z)—1

we denote the conjugate exponent by p'(z) = for
x € Q.

The Holder inequality is valid in the form

1 1
/Q F@)g(@)lde < (p ; p,) TR

Definition 1.1. Let Q) is open bounded set. We say that
p(+) satisfies the log-Holder condition, and denote this by
p(-) € LH(Q), if there exists a constant C' such that for all
T,y €Q, |z —y| <1/2,

c
— < — .
p(y)] < T p——

Let M be the Hardy-Littlewood maximal operator, i.e., for
f € Li, (®")

loc
1
M (@) = s o /Q 1F()ldy,

where the supremum is taken over all cubes () containing x,
and the |Q)] is the Lebesgue measure of @ C R™. Let Z(Q)
be the set such that M is bounded on .#P(")(£2). Diening [3]
proved that p(-) € B(Q) if p(-) € LH(QY), i.e M is bounded
on .ZP()(Q). When € is unbounded to see [4].

Morrey spaces play an important role in study of local
properties of solutions of partial differential equations. These
spaces were introduced by Morrey [11] in 1938. The norm of
Morrey space is defined as follows:

1 1/P
1l = sup (A / If(y)lpdy) ,
z,7>0 \ T Q
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where @ is the cube with the center x and with side-length
r and its sides parallel to the coordinate axes, 0 < A <
n and 1 < p < oo. Variable exponent Morrey spaces
were firstly introduced in [13] and also studied in [12].
Generalized variable exponent Morrey spaces .ZP()%(Q)
were introduced in [6]. They proved the boundedness of
maximal, singular, potential operator in variable exponent
Morrey spaces .ZP()“(Q). When w(z,r) = rMpL(L)n,
the ﬁp(')’“’(Q) are the variable exponent Morrey spaces
2P(A0(Q) in [8].

At the same time, the authors of [6] introduced
another generalized variable exponent Morrey spaces
gp(%@('),w(')(g) in[7].

In this paper, we denotes @ = QNQ. Let w(z,7) be a
positive measurable function on Q x (0, /), ¢ = diam £ and

1<p<oo.
The generalized variable exponent Morrey space
2P (Q) is equipped with the norm
riﬁ
7o =500 =S 0 Gy
where we assume that
inf  w(x,r)>0. ()

zeQ,r>0

It is the variable Morrey space .ZP()A()(Q) under the

. Az)—n .
choice w(z,r) = r #@ | where A(z) is a measurable

function on Q with values in [0,n]. When p is constant, the
norm is defined by

1

= su
£l pw p w(z,7)

z€Q,r>0

1/p ”f”Lp(Q(z,r))a

In this paper we mainly consider the boundedness of
intrinsic square functions in variable Morrey spaces. Let
u(xz,t) = P; x f(x) be the Poisson integral of f, where

. T((n+1)/2
Pt(x) = Cnm with Cp = %
The cone of aperture 5 for any 5 > 0 is defined by

Pa(x) = {(yt) € R+ |y — 2| < Bt}
The corresponding Lusin area integral S is defined by

sine=(f |w<y,t>|2jgdf)”2.

The Littlewood-Paley g-function and g3}-function are
defined respectively by

o 1/2
g(f)(z) = (/0 tIVu(:c,t)|2dt>

and

t A dydt\ "
X = _ \% )Y , A> 1.
B (/ (o) Futmo) t)

Let ¢ (z) = t™(x/t) and ¢p € C§°(R™) be real, radial,
supported in {x : |z| < 1} and

oo d
| aeers =1
0

for all £ # 0, where {b\ denotes the Fourier transform of .
The continuous square functions Sy, g and Littlewood-Paley
g-function gy, are defined by

d d 1/2
Seath@ = ( [ P )
sz

and

0o 1/2
gw(f)(ﬂﬁ)Z(/o f*wt(y)l2?> :

For 0 < a < 1, let C, be the family of function ¢ : R” — R
such that it is supported in {z : |z| < 1}, [ ¢(x)dz = 0, and

for all z and 2’

|6(2) = d(a")] < o — 2|

For f € L} (R™) and (y,t) € RTT!, set
Aa(f)(y,t) = sup | f * ¢e(y)].
¢€Ca

In [16], the intrinsic square function is defined by

1/2
GoatN@ = ([ im0l

when § = 1, denote G o by G,.
The intrinsic Littlewood-Paley g-function and the intrinsic
gx-function are defined respectively by

@) = ([t )

and
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a0 =( [ (H';yl)M<Aa<f><y,t>>2§’3ff)1/2, A1,

We recall several properties of the intrinsic square function, the proofs of them to see [16, 17].
(1) G, is of weak type (1,1):

C
o e B GalN@) > 3 < T2 oy ®)
2)If 8 > 1, then for all z € R™,
G a(P)@) < Cler, B.m)Go()(a): @

(3) If S is anyone the Littlewood-Paley operators defined above, then
S()(x) < CGalf)(2), Q)
where the constant C' is independent of f and x;

(4) The function GG, and g,, are pointwise comparable with comparability constants only depending on « and n.
A locally integrable function b belongs to BMO if

1
Ibllmyo = sup —~ / b() — boldz < oo,
Q 1QJg

where bg = ﬁ /. 0 b(x)dzx and the supremum is taken over all cube @ whose sides parallel to the coordinate axes in R”.
The commutators generated by BMO function b and intrinsic square functions are respectively defined by

b Gelt@ = (s | [ )~ ooty - )71 foff)l/g,
bl = ([ | [ e -senate s 4)"
and
b 0@ = ([ () s | [ b s s 20)™

In order to study the commutators, we need the following properties of BMO. For b € BMO and 1 < p < oo, we get

1 1/17
o ~ sup (o [ 19(e) = bl ©
Qo \1Q|
Q
For all nonnegative integers [, we obtain
|b21+1Q —bo| < C{+1)|bllemo- 7
Wang [19] has estimated this class operator for w is Assume that there is a constant C such that, for any z € R"

increasing and there is a constant D, 1 < D < 2", such that,  and for any » > 0,
forany r > 0, w(2Q) < Dw(Q), where w(Q) = w(z,r), Q is
the cube with the center  and with side-length r and its sides
parallel to the coordinate axes. We can impose the following
condition on w(z, ) as in [10].

1/C < w(z,t)/w(z,r) < C, wherer <t <2r (8
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and

/°° w@,t) gy @) ©)

Theorem 1.1. Assume that w(z, r) satisfy the conditions (8)
and (9). Then (i) there is a constant C, > 0 such that

1Sl < Coll fllpe

and 1 < p < o0;

(10)

for f € LP¥

(ii) there is a constant C}, > 0 such that for any o > 0 and
any cube @,

{z€Q:5(N) >a}|
w(@Q)

for f e LP*and 1 < p < 0.

Based on Theorem 1.1, (10) holds for the classical
Calder6n-Zygmund operators along with the Littlewood-Paley
technique in [15, 16, 17] developed by Wilson. Let

prII

(1)

Tf(x) = lim T2 () = lim f * K.(z) and T* f(z) = sup|T-f ()]

Where K. (7) = K(2)X{|z|><} and K is the standard kernel
with following properties
1' |K( )‘ < ‘z|n7

2. fr<\z\<R (x)dr =0, 0 <r <R < o0;

s

3. |K(2) - Kz — )| < 545, |2] > 2Jyl, 6> 0,

Corollary 1.2 If w satisfies the conditions (8) and (9). Then
for 1 < p < oo, there is a constant C', > 0 such that (10) holds
for T.

Corollary was also proved in [10].

Theorem 1.2. If w satisfies the conditions (8) and (9). Then
(i) there is a constant C}, > 0 such that (10) holds for g}k\’a
where0 < a<1,A>3and1 <p<o0o;

(ii) there is a constant C, > 0 such that any cube (), (11) holds
for g3, where 0 < v <1, A > 322 and 1 < p < oo,

Theorem 1.3. If w satisfies the conditions (8) and (9). Then
for0 < o < land1 < p < oo, there is a constant Cp, > 0
such that (10) holds for [b, G,,].

Theorem 1.4. If w satisfies the conditions (8) and (9). Then
for0 < a < 1,A>3and 1 < p < oo, there is a constant
C} > 0 such that (10) holds for [b, g% ]

We can obtain the following results by property (4),
Theorem 1.1 and Theorem 1.3.

Corollary 1.6 If w satisfies the conditions (8) and (9). Then
(i)for 0 < a < land 1 < p < oo, there is a constant C}, > 0
such that (10) holds for g,;

(

11l 2pcr00) w01 () = sup
€N TP

The generalized Morrey space .7 with constant exponent first appeared in [11]. If §(r) =

gpp(-),00,0(:) Q)
In addition, we assume that w(x, r) satisfies the condition

sup |lw(x
TEQN

)

s M Lo 0,0 < 00-

e>0

(iif) for 0 < a < land 1 < p < oo, there is a constant
Cp > 0 such that for any A > 0 and any cube @ (11) holds for
Ya-

Corollary 1.7 If w satisfies the conditions (8) and (9). Then
for 0 < o < land1 < p < oo, there is a constant Cp, > 0
such that (10) holds for [b, g].

We have the following conclusion on variable exponent
generalized Morrey spaces .ZP() ().

Theorem 1.5. Let ) be an open bounded set, namely, { =
diam ©Q < oo and p(-) € LH(Q) satisfy assumption (1) and
the function wy (x,r) and wo(z, ) satisfy the condition

l
dt
/ w1 (.’E, t)?

where C in independent of x and ¢. Then GG, is bounded from
2P0 (Q) to LP0)w2(Q).

Corollary 1.9 Let ) be an open bounded set and p(-) €
LH(Q) satisfy assumption (1), A(z) > 0 and sup .o A(z) <
n. Then G, is bounded in the space .Z7()A()(Q).

In the following, we introduce another generalized the
variable exponent Morrey spaces .ZP():0():«()(Q).

Definition 1.2 Let w(z,r) Q x (0,/) — Rt and
O(r ) (O ¢) — [1,00] be measurable functions. The space
2P()00).w()(Q) is set of functions with the finite norm

< CWQ(%,T),

1100w

L6()(0,6)

00, We can write

— 2055 ().

12)

Theorem 1.6 Assume p € LH () satisfy (1), £ = diam {2 < oo and Let

1< 91_ 01 (t)

< <of
1< 6y <02(t)<0F

1 <O0,0<t<£,
< oo, 0 <t <.
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if there exists § > 0 such that
01(t) < 02(t)

fort € (0,6), 61 and w; satisfy (12) and

t g dr GG
sup / wg(x7§)92(5) (/ ~/) d§ < oo,
0<t<d,zeQ Jo t [rwl (gc, r)][e(ﬁ)]

where 0 = inf (¢ ¢) 01(s), then G, is bounded from £7()-010):1()(Q) to LP():02()w2()(Q),

2. Preliminaries

A nonnegative locally integrable function w belongs to A, (p > 1) if

o )y s <

where p’ is the conjugate index of pie. 1/p+1/p’ = 1.

Lemma 2.1. [18] The intrinsic square function G, the Lusin area integral S, the Littlewood-Paley function g, the continuous
square functions .S, and gy, are bounded on L? (w) for w € A4, (1 < p < o0).

Lemma 2.2. [20] Let 0 < a < 1,1 < p < oo and w € A;,. Then the commutators [b, G,] and [b, g3 ,] are bounded from
LP(w) into itself whenever b € BMO.

Lemma 2.3. [19] Let 0 < aw < 1 and A > (3n 4 2«)/n. Then for any o > 0, there exists a constant C' > 0 independent of f
and o > 0, such that

n

o e g, (@) >l < S [ Iflde

An important extrapolation theorem was introduced in [5].
Lemma 2.4. Let f and g be non-negative and measurable functions, assume that there exists a constant C' such that

/ f(@) w(z)dr < C/ g(x)tw(z)dx
Q Q
holds for some 1 < ¢ < oo and for every w € A,. Then

1oy < Cllgllpey (13)
forp(-) € LH(Q).

We can obtain the following conclusion by Lemma 2.1 and Theorem 2.2. (13) holds for [b, G,](f) and [b, g5 ,](f) for

Lemma 2.4. fe 2P0 (Q)and p(-) € LH(R).
Theorem 2.1. (13) holds for the intrinsic square function We will use the following estimate.
Ga(f)(0 < o < 1), the Lusin area integral Sg(f), Lemma 2.5[9] Suppose that 1 < p_ < p(z) < pp < oo,

the Littlewood-Paley function g(f), the continuous square p(-) € LH(Q) and
functions Sy (f) and g, (f) for f € £P0)(Q) and p(-) €

LH(Q). sup v(z) < oo, ing[n + v(x)p(z)] > 0.
The Littlewood-Paley g}-function has been discussed in [5]. TEQ e
For commutators, we have the following theorem by using Then

Lemma 2.2 and Lemma 2.4.

n

lle = " xgpm o) < Cr* @55, 2 €Q, 0 <7 < £ = diam ©,

where C' is independent of x and r.
[6, 7] assert that the constant C' in Lemma 2 can be express as

n(i_#
C = Col™ 7= "7
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where C is independent of €.
Lemma 2.5. [21] Let 6(t) and r(¢) be measurable functions on I = (0, £) such that

1< inf 6(¢), sup r(t) < oo, 0(t) < r(t), t € (0,).
t€(0,0) t€(0,6)

if

t b B
sup / v(€)"® (/ wlf@l (r)dr) d¢ < oo,
o<t<tJo t

then H, ,, is bounded from L?¢)(0,¢) to L") (0, ¢), where 6= infoe (e o) 0(s) and H, , is the weighted Hardy type operator

o)) =) [ F(Erole)ae.
Lemma 2.6. [7] For p(-) € LH the embeddings
L>®(Q) — gp(-)ﬁ(-),w(-)(g) N LP(')(Q)
holds if (12) is satisfied and there exist a § € (0, ¢) such that
sup [|w(@, )llocr 6.0 > 0-

Lemma 2.7. [10] Assume that w(z, r) satisfy the conditions (8) and (9).
Then for 1 < ¢ < p < o0, there is a constant Cy, , > 0 such that

Mg fllpw < Cpgllfllpw — for f e LP?,

where (M (| f[)?(x))"/4 = M, f(z) and M is the Hardy-Littlewood maximal operator.

3. Proof of the Main Results

Proof of Theorem 1.2: By (4) and (5), it is enough to prove Theorem 1.1 for G, (f). (i) Let @ be a cube of R™, with the
center o and side-length r. Decompose f = fx2¢ + fX(20)- and denote fx2q by f1 and fx(2g)c by f2, x2¢ denotes the
characteristic function of set 2Q. Since G, (f) is a sublinear, we have

(s | Gat00Pas)

(w@tvr) /Q GelJ 1)(””)'%) s <w<xt,r> /Q |Ga(f2)(x)|”d:c> N
= L+ 1.

Lemma 2.1 and (8) imply

no= ot [emere)

1 1/P
Oy ([ 1)
Cllf

Forany x € Q, (y,t) € I'(z) and z € (2"1Q \ 2'Q) N Q(y,t), 1 € Z*, then

N

[

2t>|x—y\—|—|y—z|2|x—z|>|z—xo|—|x—xo|>21_lr.
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By the Minkowski inequality and Holder inequality, we have

|Ga(f2) ()|

dydt\ "/*
= Al(x)(Aa(fQ)(y7t))2t3+l)

(
= (/F (sup |f * ¢¢(y)])? dydt>1/2
<C

(z) HECa trtl

00 2 1/2
dydt
Pl (Lo} )
2t=2r Sz —y|<t (2Q)n{z:|y—z|<t}
oo 2 1/2
dydt
(L0 (8 L) #5)
=24 J|z—y|<t 2+1Q\2LQ) tn
oo oo dt 1/2
S o) [
(X w\w' M)y,

<C d
Z |21+1Q| /2‘+1Q\21Q) (2)|d=

o) w l’o 2l+1 )l/p 1 / . 1/p
d .
CZ 2l+1Q|1/p w(zo, 2117) 2410 |f(2)[Pdz

It is easy to know that

w(wo, 2417)

W is comparable to /2

" w(x,t)

tn+1

dt

Iy

by (8) and (9). So we get

2!ty

Cup@r <clsip 3 [ e
<l / et

tn+1

<ol L)

Hence

I, < CHf”p,W'

Combining the estimate for I; and I, we obtain the (10).

(i1) For ¢ > 0, by (3) and (10), we get (11). O
In order to prove 1.2 we need the following estimate.

Proposition 3.1. Let 0 < § < 1. Assume that w satisfies

1/C < w(x,t)/w(x,r) < C, for r<t<2r
and

N

 w(z,1) w(z,r)
/’r tn@-‘rl dt c rn@ :

Then for 1 < p < oo there is a constant C' > 0 such that

/ Gx () (@) Pde < ColQ)|Su 5(F) (@)
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for f € LP*  any cube ), 8 and N large enough, where G is the grand maximal function .
The following important weight norm inequality is proved in [15]:

[ Gxn@PV @ <C [ (Sualle)? 31V (@) (14)

That is for 0 < p < oo, there exits a "Maximal operator” M such that (14) is valid for f € LP(R"™), any nonnegative
V € Lj,.(R™), appropriate 1 and large enough 3 and N with a constant C which is independent V" and f. For every p, we can
take M = M* (k > 1);if k = 1, (14) holds for p € (0, 2).

Proof of proposition 3.1: Taking V' = x¢ in (14), we have

[ 1Gxtn@ira@is < ¢ [ (Sualh@)Hxods.

R

Since x¢ is the characteristic function of @), MXQ(.I‘) < 1. And for z € 21+1Q \ 2'Q, ]T]XQ(x) is comparable to 27",
leZ™ .

Therefore
[16x(n@pds
Q
<ol [ Sestnpase X [ s, e
2Q 21+1Q\2!Q)
¢ [wmQ) S 2-1"%@1“@)} IS0s(F) I
=1
b > w x0,2 T) p
Z = 15,8 (F)II -
1=
Since
w(zwg, 211r) 2"y w(xo,t)
‘2”;1@'”9* is comparable to /l tn9+71 dt,
2tr
we get

[ iextn@pas < et 7D, s
< Cw(Q)[Sy,s (P, O
Proof of 1.2: Wislon ([16, 17]) prove that there exists & < 1 which depends on 7" such that for all z € R",
Sy(Tf)(x) < (T, ¢, n)Ga(f)(2)-
By the same method yields
Sy p(Tf)(@) < (T, 9, n, B)Galf)(2), (15)

forg > 1
The Proposition 3.1 tells us

IGN(Nllpe < CllSys(Hlpe (16)

for large enough S and N.
It is well known that for all x € R™ [22, pp. 67-68],

T f(z) < C(n, T)(GN(Tf)(x) + Mf(x)).
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Combining this with (15) and (16), we have

1T flpe < CIS68(THllpew + 1M fllp.e)
< CIGa(llpaw + 1M fllp.w)-
This estimate along with Theorem 1.1 and Lemma 2.7, (10) yields for 7. O

Proof of Theorem 1.2 : (i) As before, we set f = f1 + f2, f1 = fXx2q. From the definition of g5 ,, we can easily deduce that

(w(;) /Q (gi,a(f)(w))pdx)l/p
e /Q(Ga(f)(x))pdx)”p+§12—m/2( [ @atn@ya) |

o0

<LLJ(SUO(::")”’” K /Q(Ga(f)(x))de> " T ; g=9An/2 < /Q(G%,a(fl)(x))pdx) v

¥ izjw( / <G2.f,a<f2><x>>pdx)1/p}

=Io+ Y 272 4y "o/
j=1 j=1

By Theorem 1.1, we know that Iy < C/||f||,.... We can get the following estimate for I} from [19], i.e.

I < Clfllp (@2 + 2/>ww<é2)>//
We obtain
I} < C| fllpp (2772 + 27/7)
by (8).

The estimate of 1 3(2) is similar to I,

G o(f2)(x)ds

) i I+1,\1/p 1 1/p
3jn/2 w(x()v 2 T) P
<C2 E : |2L+1Q| /P W (70, 2717) Jyierg F (@I dz

=1
; > 0 \'P
<l [ 20 )
1/p
. w(xg,r
<o) g, 20TV
hence
1 < C2| £
Therefore

<w(${),r) /Q (93, (£)(@))" dx)l/p

<C||f||p,w(]— + Z 27j)\n/223jn/2 + Z 27j/\n/22jn/p)
j=1 j=1

<C[flp.
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for A > 3> 2/p.

(ii)For o > 0, by Lemma 2.3 and the estimate of 1\*/, the (11) is valid to g5 . O
Proof of Theorem 1.3 : Fix a cube @ of R™ whose center is o and edges have length r. Decompose f = fx2q + fX(2¢)- and

denote fx2q by f1 and fx(2q)- by fo.

(s [ cuneras)”
(s [y o) (s [ csers)”

=11, + IT,.

By Lemma 2.2 we get

mo< oo ([ Ga]<f1><x>pdx)1/p

18] Baro Y/
C o2 77 ( /2 . |f(:C)Pd3:>
clf|

Now we estimate /5. Forany « € Q, (y,t) € I'(x), since |[b(x) — b(z)| < |b(z) — bg| + |b(2) — bg|, we have

N

pwllbllBro-

2 1/2
dydt
PGal(R@] < ) UGl + [ sup | [ 0:) = balonty = )72 )
= IIy + Il
In the proof of Theorem 1.1, we get that for any = € @,
(1’0, )
Galf2) @) < CIfl5e— 0
And by the (6), we obtain
[ atdr < Ol [ 1) - boPds
w(zo,7) Jo PRl Jg
< P ol o
Next we deal with I15;. It is similar to |Gy (f2)(x)],
2 1/2
dydt
i ([ s ([ 106) - byt - s ) )
T'i(z) ¢€Ca R™
2 1/2
_ dydt
<[ ( gl 1)~ bassgllF(2)1dz) 4L
I (2) Z {201 Q\2' QI {=:ly—z[<t) tntt

oo

Qdydt 1/2
—|—O(/ (tn / ‘bQH-lQ — bQ|f(Z)|dZ) >
I (2) l; (21 Q\21 QN {z:|y—=|<t} gt
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<CZ |2l+1Q| /2 b(z) _b2l+1Q||f(Z)|dZ

l+1Q\2lQ

|b21+1Q - bQ|
+C d
Z 21+1Q| (21+1Q\21Q) ‘f(z)| :

e’} 1/p 1 , 1/Pl
<||f||p,w< / ”ifi’f)dt) <|Q| /Q |b<z>bQ|pdx>

> |b21+1 - bQ|w($0,2l+17‘)1/1)
+ Ol Sl D=2
=1

2HIQ
Applying (6), (7) and w(zg, 2"717) ~ w(xe, ), we have
(QjOa )1/ (x07r)1/19 . [+1
Iy < Oflpslblmaio ™+ Ol lpwlblmaio =203 samr
($0, )l/p
< Ciflly, WHbHBMOi/p :
Hence
;/HP dz < C 12,0 16 aro-
w(mo, T) 21 BMO
Q
Combining /117 and 151, so
1y < Cllfllpwlibll Baro-
Thus (9) holds for [b, G,,]. O
Proof of Theorem 1.4 : By Lemma 2.2, we can use the same arguments in the proof of Theorem 1.2 (i) and Theorem 1.3 to
get the conclusion of Theorem 1.4. O

We use the following estimate to show the Theorem 1.5 and Theorem .
Proposition 3.2 Let  be bounded, ¢ = diam 2 and p € H L() satisfy (1). Then

¢
_n_ ——n__
HGafHLp(-)(@(x,t)) < Otr@ /t T ||fHLp(-)(Q(3;77»))d7"v 0<t<d

for f € LPC)(€2), where C is independent of f, z € Q and t.
Proof Proposition 3.2: Let Q be a cube of R", the center is x( and side length is t. Decompose f = f Xog t f X (20 and

denote f Xa6 by f1 and f X(20) by fa, X265 denotes the characteristic function of set 2@. Since G, is a sublinear, we have

||Ga(f)||Lp(->(@(zo7t)) < ||Ga(f1)HLp(-)@(IO¢)) + HGa(f2)||Lp<->(@(mo,t))-
We get

1Ga U)o @mneyy < IGalfllscr oy < Cllftllsor@) = Ol oeo Gmn a0

by Theorem 2.1.
Then we easily obtain

l
__n__1
/27“ ZE I P PRTP R
t

¢
n __n__q
< C’tW)/ 7o @) ||f||LP(‘)((§(m,T))dT'
t

HGa(f)||Lp<-)@(x¢)) < Ctr@
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Next we estimate G, (f2). It is similar to the second estimate in proof (i) of Theorem 1.1. We have

=1
Ga <C —_— d
Galf2)(@)] ; 121+1Q)| /Qm(zHlQ\le) 72l

£ (=)l

<C T —dz.
N\Q(x0,2t) |z — 2]

Choosing € > p%, by the Holder inequality of variable exponent and Lemma 2 we have

[ eI,
N\ (wo,t) [T0 — 2|"
¢
1
gs/ |f(z)|_€(/ E_Hd5>dz
N\Q(ot) 170 = 2[" jo—y| §

4
1
of [ e,
t S QN{y:|zo—z|<s} |x0 - Z|

¥4
1
—n+
<C/t ot 1M lLor @ aosp 1120 = 217"l Lo (G 2,08

¢
—__n__1
<C [ 5Tl 00 o
Hence
E n 1
Gal)@| < € [ 5T 00 o
t
¢ .
< 0 [ T o
By Lemma 2 and the Holder inequality of variable exponent again, we get
¢ .
1Ga(f2)ll o) (Gaot)) S C/t § 7O 2o (@ o, DI Loy (G ooty
¢
_n_ —n__1
< Ctm')/t s P@ ||f||Lp<-)(@(mo,s))d3- =

Proof of Theorem 1.5 :

n

r pl@)

[Ga(Hllp()w. = sup ) ||Ga(f)||Lp<~>(Q(1;,r))~

s A
z€Q,r>0 W2 (x7 r
We just consider r € (0, ) under the assumption of (2). Applying Proposition 3.2, we have

r 6]

sup
xeﬂ,re(O,é)wQ(xv T)

1 l 7L71
<C sup 7/ s p(@) f N ds
veQr>0 w2(2,7) J, 1 2ro @ o))

1 C i (z, s)
<Ol sy [ s

(z,7) s
SO llpyn O

||Ga (f) ||LP(')(©($7’I‘))
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Proof of Theorem :
GaP 8D 16 1)
o P(),6(),0() = SUp||—= o 2 (D (w1
R Q) veoll o LrO) (Q(z,r)) LOC)(0.0)
< sup |2 1651 aup [“E 6, )
X Sup D . P (O (z.1r sup —n_ () (Q(z,r
zeQ || rr@® “ Lro(@Q(em) LOO)(0,6) x€Q||l rr@ “ LrO@@m) LOC)(8,0)
= L+1
The estimate of I, can directly follow from the Lemma 2.6.
I < ClGa(H)llzrerllwz(@; )l e 5.0)
< ClGa(Hll#ror )
< Cllfllzeor @) < Cllfllzoeroer e @)-
Fort € (0,¢), We find
Z n 1
zlgc‘w,t)/ P Lo Gy '
\ LrO)(Q(z,1)) LOO) (5.0)

We splitting the integral with respect to  into two integrals over (0, §) and (8, £). The estimate of integral over (4, £) is obtained
as I and the estimate of integral over (0, §) is used by Lemma 2.5. In addition, by the Lemma 2.6 we get

I < COlfllgrorecwo ) + sup
€

< O||f||$f’(-)v9<-)=w(-)(g)-
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