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Abstract: Quasilinear Schrödinger equations appear in several differential physical phenomena. We consider the quasilinear
Schrödinger equation −∆u + V (x)u + λ

2 [|∇u|2]∆u = f(x, u) in RN , where V and f are periodic in x1, ..., xN and f is odd
in u and subcritical. By employing the genus theory and variational method, we only need f is continuous, which is allowed to
have weaker asymptotic growth than usually assumed, and obtain infinitely many geometrically distinct solutions for λ > 0.
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1. Introduction

This paper concerns the following quasilinear Schrödinger
equation −∆u+ V (x)u+

λ

2
[∆|u|2]u = f(x, u) a.e. in RN ,

u ∈ H1(RN ),
(1)

where λ is a positive parameter, V : RN → R and f :
RN × R → R are continuous functions. Such problems are
related to standing wave solutions to the so-called modified
Schrödinger equation

iψt = −∆ψ +W (x)ψ − ρ(|ψ|2)ψ +
λ

2
[∆|z|2]z, x ∈ RN ,

(2)
where W : RN → R is a given potential and ρ : R → R
is a real function. Quasilinear Schrödinger equations like (2)
appear in several differential physical phenomena, such as in
plasma physics, in superfluid films and in condensed matter
theory, see [1, 2, 3, 4]. For the case where λ = 0, problem (1)
becomes into the semilinear equation and it has been widely
studied by various conditions, see e.g. [6, 7, 8]. When λ < 0,

equation (1) has been introduced in [9, 10] to deal with a model
of self-trapped electrons in hexagonal or quadratic lattices and
it has caused much attention.

There exist lots of works on the existence and multiplicity
of solutions to problem (1) via different methods for λ < 0.
For example, [5, 11] for a change of variables, [12, 19] for a
constrained minimization argument, [20] for Nehari manifold
methods.

However, most of these results are based on the fact λ < 0.
There exist few results on dealing with the case λ > 0.

From the variational point of view, the first difficulty is to
find a suitable Sobolev space as (5) is not well defined in
H1(RN ). The other difficulty is to ensure the positiveness
of the principal part, i.e., 1 − λu2 > 0. We should mention
that for λ > 0, Lange et al. [21] considered the Cauchy
problem for quasilinear Schrödinger equation (2) with ρ = 0
and W = 0. When N = 1 and ψ(0, x) = φ(x), they derived
L2-solutions for (2) with λ|φ(x)| ≤ δ < 1. Furthermore,
for 2λ‖φ‖W 1,∞ < 1, they also derived the existence of
H2-solution for arbitrary space dimension. Alves et. al.,
combining variational methods with perturbation arguments,
obtained the existence of nontrivial solutions for problem
(1) by replacing f(x, u) with |u|q−1u and

[
1− 1

(1+|u|2)3

]
u

respectively[13].
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Here we want to show that problem (1) has infinitely many
pairs±u of geometrically distinct solutions. To the best of our
knowledge, there exist few results on the existence of infinitely
many solutions to problem (1) for λ > 0. According to
[13], we make a change of variables, and then use the method
developed in [14] to obtain multiple results.

Let F (x, u) :=
∫ u

0
f(x, t)dt and G(u) =

∫ t
0
g(s)ds, g is

defined in (6). We assume that V and g satisfy the following
hypotheses:
(H1) V is continuous, 1-periodic in xi for 1 ≤ i ≤ N , and

there is m0 > 0 such that V (x) ≥ m0 for all x ∈ RN .
(H2) f is continuous, 1-periodic in xi for 1 ≤ i ≤ N ,

and |f(x, u)| ≤ c(1 + |u|p−1) for some c > 0 and
2 < p < 2∗, where 2∗ = 2N

N−2 if N ≥ 3, 2∗ := ∞
if N = 1 or 2.

(H3) f(x, u) = o(u) uniformly in x as u→ 0.
(H4) f(x,u)−V (x)u

G(u)g(u) is strictly increasing for u ∈ (0,+∞).

(H5) F (x,u)
u2 →∞ as |u| → ∞.

Remark 1.1. (i) (H3) and (H4) mean that uf(x, u) >
2F (x, u) > 0 for n 6= 0.

(ii) (H2) and (H3) imply that for ∀ε > 0 there exists
Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|p−1 for all u ∈ R. (3)

(iii) (H2), (H3) and (H5) are standard assumptions in this

context, we drop the well-known (AR) condition. Our
condition (H5) is weaker than (AR) condition.

Set ∗ denote the action of Zn on H1(RN ) given by

(k ∗ u)(x) := u(x− k), k ∈ ZN . (4)

(H1) and (H2) imply that if u0 is a solution of problem (1),
then so is k ∗ u0 for all k ∈ ZN . Define

O(u0) := {k ∗ u0 : k ∈ ZN}.

O(u0) is called the orbit for a energy functional J if u0 is a
critical point of J and J is ZN -invariant, i.e., J(k ∗u) = J(u)
for all k ∈ ZN and all u. Two solutions u1 and u2 of (2) are
said to be geometrically distinct if O(u1) 6= O(u2).

We now give our main result.
Theorem 1.1. If hypotheses (H1) − (H5) hold and f is

odd in u, then problem (1) has infinitely many pairs ±u of
geometrically distinct solutions.

This paper is organized as follows. In Section 2, we
present an auxiliary problem and some necessary preliminary
knowledge. We prove our main result in Section 3.

2. Preliminary Results

From hypothesis (H1) we will discuss problem (1) in the
space H1(RN ) endowed with the norm

‖u‖ :=

(∫
RN

|∇u|2 + V (x)u2)

) 1
2

,

which is an equivalent norm in H1(RN ). S is the unit sphere in H1(RN ). C1, C2, c1, c2, ... denote different positive constants
whose exact values may be different. |Ω| is the Lebesgue measure of a measurable set Ω ⊂ RN . Br(y) := {x ∈ RN : |x− y| <
r}. The usual norm of the Lebesgue space Lp(Ω) is denoted by |u|p,Ω, and by |u|p if Ω = RN . For a energy functional J we set

Jc := {u : J(u) ≤ c}, Jc := {u : J(u) ≥ c}, Jc2c1 := {u : c1 ≤ J(u) ≤ c2}.

Note that (1) is the Euler-Lagrange equation associated with the energy functional

ϕ(u) =
1

2

∫
RN

(1− λu2)|∇u|2dx+
1

2

∫
RN

V (x)u2dx−
∫
RN

F (x, u)dx. (5)

In order to seek solutions of ϕ(u), define g : [0,+∞)→ R by

g(t) =

{√
1− λt2 if 0 ≤ t < 1√

3λ
,

1
3
√

2λt
+ 1√

6
, if 1√

3λ
≤ t.

(6)

Set g(t) = g(−t) for all t ≤ 0. It is easy to see that g ∈ C1
(
R,
(

1√
6
, 1
])

, and g is an even function, which is decreasing in
[0,+∞) and increasing in (−∞, 0). Then ϕ(u) becomes into

ϕ(u) =
1

2

∫
RN

g2(u)|∇u|2dx+
1

2

∫
RN

V (x)u2dx−
∫
RN

F (x, u)dx. (7)

Let G(t) =
∫ t

0
g(s)ds. From a simple computation, we have that the inverse function G−1(t) exists, G−1, G ∈ C2(R), and it

is an old function. The following lemma comes from [13], which will be used later.
Lemma 2.1. (1) limt→0

G−1(t)
t = 1;

(2) limt→∞
G−1(t)

t =
√

6;
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(3) t ≤ G−1(t) ≤
√

6t for all t ≥ 0;
(4) − 1

2 ≤
t
g(t)g

′(t) ≤ 0 for all t ≥ 0.

In order to find the critical points of ϕ(u), we make a change variable v = G(u) =
∫ u

0
g(s)ds. Thus the functional ϕ(u) can

be written in the following form:

ψ(v) =
1

2

∫
RN

|∇v|2dx+
1

2

∫
RN

V (x)|G−1(v)|2dx−
∫
RN

F (x,G−1(v))dx.

Then ψ is well defined in H := H1(RN ) and ψ ∈ C1(H,R) under the hypotheses (H1) − (H3). Note that (H1) and (H2)
mean that ψ is invariant with respect to the action of ZN given by (4). It is easy to see that

〈ψ(v), w〉 =

∫
RN

[
∇v∇w + V (x)

G−1(v)

g(G−1(v))
w − f(x,G−1(v))

g(G−1(v))
w

]
dx (8)

for all v, w ∈ H , and the critical points of ψ are weak solutions of the following problem:

∆v + V (x)
G−1(v)

g(G−1(v))
=
f(x,G−1(v))

g(G−1(v))
, ∀v ∈ H.

It has been proved that in [25] if v ∈ H is a critical point of the functional ψ, then u = G−1(v) ∈ H and u is a solution of
problem (1).

3. Proof of the Main Result

Let
M := {v ∈ H \ {0} : 〈ψ′(v), v〉 = 0},

where M is called the Nehari manifold. Since we don’t know whether M is of class C1 under our hypotheses, we can’t employ
minimax theory directly on M . In order to overcome this difficulty, we use the method developed in [14].

For t > 0, set

I(t) = ψ(tv) =
t2

2

∫
RN

|∇v|2dx+
1

2

∫
RN

V (x)|G−1(tv)|2dx−
∫
RN

F (x,G−1(tv))dx.

Lemma 3.1. For all u 6= 0 there exists a unique tu > 0 such that I ′(t) > 0 for 0 < t < tu and I ′(t) < 0 for t > tu.
Furthermore, tu ∈M if and only if t = tu.

Proof By virtue of (3), (H1) and Lemma 2.1(3) , for ε sufficiently small we have

I(t) ≥ t2

2

∫
RN

|∇v|2dx+
1

2

∫
RN

V (x)|G−1(tv)|2dx− ε

2

∫
RN

|G−1(tv)|2dx− Cε
p

∫
RN

|G−1(tv)|pdx

≥ t2

2

∫
RN

|∇v|2dx− 6
p
2

p
Cεt

p

∫
RN

|v|pdx.

Since p > 2 and V is not a constant, the above inequality deduces that I(t) > 0 when t > 0 is sufficiently small. From Lemma
2.1-(3), one has

I(t) ≤ t2

2

∫
RN

|∇v|2dx+ 3t2
∫
RN

V (x)v2dx−
∫
RN

F (x,G−1(tv))dx

≤ t2

2

∫
RN

|∇v|2dx+ 3t2
∫
RN

V (x)v2dx− t2
∫
v 6=0

F (x,G−1(tv))

(G−1(tv))2
· (G−1(tv))2

(tv)2
v2dx.

Lemma 2.1(2), (H5), and Fatou’s lemma deduce that∫
v 6=0

F (x,G−1(tv))

(G−1(tv))2
· (G−1(tv))2

(tv)2
v2dx→∞ as t→∞,

which infers that I(t)→ −∞ as t→∞. Then I has a positive maximum.
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I ′(t) = 0 is equivalent to∫
RN

|∇v|2dx =

∫
v 6=0

[
f(x,G−1(tv))

(g(G−1(tv))

1

tv
− V (x)

G−1(tv)

g(G−1(tv))

1

tv

]
v2dx.

Set

h(s) =
f(x,G−1(s))

sg(G−1(s))
− V (x)G−1(s)

sg(G−1(s))
.

Hypothesis (H4) infers that s 7→ h(s) is strictly increasing for s > 0. Thus there is a unique tu > 0 such that I ′(tu) = 0 and
the first conclusion derives. The second conclusion can be obtained by the fact that I ′(t) = t−1〈ψ′(tu), tu〉. 2

(1) There exists r > 0 such that c := infM ψ ≥ infSr
ψ, where Sr := {u ∈ E : ‖u‖ = r}.

(2) ‖u‖2 ≥ 1
3c for all u ∈M .

Proof (1) If this is not true, then for ∀n ∈ Z+ there is vn 6= 0 such that vn → 0 in H and∫
RN

(
|∇vn|2 + V (x)|G−1(vn)|2

)
dx ≤ 1

n
‖vn‖2.

Set wn := vn
‖vn‖ . Then ∫

RN

(|∇wn|2 + V (x)w2
n)dx+

∫
RN

V (x)

(
|G−1(vn)|2

v2
n

− 1

)
w2
ndx ≤

1

n
.

Pass to a subsequence if necessary, then vn → 0 a.e. in RN . Since vn → 0 in L2(RN ), for ∀ε > 0 the measure |{x ∈ RN :
|vn(x)| > ε}| → 0 as n→∞. Thus from the Hölder inequality∫

|vn|>ε
w2
ndx ≤ |{x ∈ RN : |wn(x)| > ε}|

q−2
q ‖wn‖2q → 0, as n→∞, (9)

where q = 2∗ if N ≥ 3 and q > 2 if N = 1 or 2. This, combining Lemma 2.1-(1), infers that ‖wn‖ = 1 and wn → 0 in H , a
contradiction. By (3) and Lemma 2.1-(3), we have∫

RN

F (x,G−1(v))dx ≤ ε

2

∫
RN

|G−1(v)|2dx+
Cε
p

∫
RN

|G−1(v)|pdx

≤ 3ε

∫
RN

|v|2dx+
6

p
2

p
Cε

∫
RN

|v|pdx

≤ C1ε‖v‖2 + C2‖v‖p.
Letting ε sufficiently small, we derive

ψ(v) ≥ C3‖v‖2 − C4‖v‖p

and infSr
ψ > 0 for sufficiently small r. The inequality infM ψ ≥ infSr

ψ is a consequence of Lemma 3.1 since for each v ∈M
there exists t̃ > 0 such that ṽ ∈ Sr(ψ(tuv) ≥ ψ(t̃v)).

(2) For v ∈M ,

c ≤ 1

2

∫
RN

|∇v|2dx+
1

2

∫
RN

V (x)|G−1(v)|2dx−
∫
RN

F (x,G−1(v))dx

≤ 1

2

∫
RN

|∇v|2dx+ 3

∫
RN

V (x)|v|2dx

≤ 3‖u‖2.
Thus the proof is completed. 2

Lemma 3.2. ψ is coercive on M , i.e., ψ(v)→∞ as ‖v‖ → ∞, v ∈M .
Proof We proceed by contradiction. Let {vn} ⊂ M be a sequence such that ‖vn‖ → ∞ and ψ(vn) ≤ d for some d. Set

zn := vn
‖vn‖ . Then passing to a subsequence if necessary, we have zn ⇀ z in E and zn(x)→ z(x) a.e. in RN . Choose yn ∈ RN

such that ∫
B1(yn)

z2
ndx = max

y∈RN

∫
B1(y)

z2
ndx. (10)
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Because ψ and M are invariant with respect to the action of ZN given by (4), we can suppose that {yn} is bounded in RN . If∫
B1(yn)

z2
ndx→ 0 as n→∞, (11)

then zn → 0 in Lq(RN ) for 2 < q < 2∗. Employing (3) and Lemma 2.1 we have that
∫
RN F (x,G−1(szn))dx→ 0 for all s ∈ R.

Then
d ≥ ψ(vn) ≥ ψ(szn)

=
s2

2

∫
RN

|∇zn|2dx+
1

2

∫
RN

V (x)|G−1(szn)|2dx−
∫
RN

F (x,G−1(szn))dx

≥ s2

2

∫
RN

|∇zn|2dx+
s2

2

∫
RN

V (x)|zn|2dx−
∫
RN

F (x,G−1(szn))dx

→ s2

2
.

Choosing sufficiently large s we derive a contradiction. Thus (11) can not hold. Note that |vn| → ∞ if z(x) 6= 0, we have∫
RN

F (x,G−1(vn))

‖vn‖2
dx =

∫
RN

F (x,G−1(vn))

(G−1(vn))2

(G−1(vn))2

v2
n

z2
ndx→∞.

Consequently,

0 ≤ Ψ(vn)

‖vn‖2
≤ 3−

∫
RN

F (x,G−1(vn))

‖vn‖2
dx→ −∞,

which is a contradiction. The proof is completed. 2

Lemma 3.3. If A is compact subset of H \ {0}, then there exists R > 0 such that ψ ≤ 0 on (R+A) \BR(0).
Proof Without loss of generality we suppose that A ⊂ S. Proceeding by contradiction, assume that there exists vn ∈ A and

wn = tnvn such that ψ(wn) ≥ 0 and tn → ∞. Passing to a subsequence if necessary, we may suppose that vn → v ∈ S.
Because of |wn(x)| → ∞ if v(x) 6= 0, it follows from (H5), Lemma 2.1-(2), and Fatou’s lemma that∫

RN

F (x,G−1(wn))

t2n
dx =

∫
RN

F (x,G−1(wn))

w2
n

v2
ndx

=

∫
RN

F (x,G−1(wn))

(G−1(wn))2

(G−1(wn))2

w2
n

v2
ndx

→∞.
From Lemma 2.1-(3)

0 ≤ ψ(wn)

t2n

=
1

2

∫
RN

|∇v|2dx+
1

2

∫
RN V (x)|G−1(wn)|2dx

t2n
−
∫
RN F (x,G−1(wn)|2dx

t2n

≤ 3−
∫
RN F (x,G−1(wn)|2dx

t2n
→ −∞,

which is a contradiction. Thus the proof is completed. 2

Remember that S is the unit sphere in H and define the mapping m : S → M by m(w) := tww, where tw is as in Lemma
3.1. We consider the functional Ψ : S → R defined by Ψ(w) := ψ(m(w)).

Lemma 3.4. ([14]) The mapping m is a homeomorphism between S and M , and the inverse of m is given by m−1(v) = v
‖v‖ .

Lemma 3.5. ([14]) The application defined above satisfies:
(i) Ψ ∈ C1(S,R) and

〈Ψ′(w), z〉 = ‖m(w)‖〈ψ′(w), z〉 for all z ∈ Tw(S),

where Tw(s) denotes the tangent space of S at w.
(ii) If (wn) is a Palais-Smale sequence for Ψ then m(wn) is a Palais-Smale sequence for ψ. If (vn) ⊂ M is a bounded

Palais-Smale sequence for ψ, then m−1(vn) is a Palais-Smale sequence for Ψ.
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(iii) w ∈ S is a critical point of Ψ if, and only if m(w) is a (nonzero) critical point of ψ. Moreover,

inf
S

Ψ = inf
M
ψ.

(v) If ψ is even, then so is Ψ.
Lemma 3.6. ([14]) The mapping m−1 defined in Lemma 3.4 is Lipschitz continuous.
For the convenience we give some notations

K := {w ∈ S : Ψ′(w) = 0}, Kd := {w ∈ K : Ψ(w) = d}.

Choose a subset F of K such that F = −F and each orbit O(w) ⊂ K has a unique representative in F . Then we need to
prove that the set F is infinite. We assume that

F is a finite set. (12)

Since we will prove that Palais-Smale sequences have a certain discreteness property later, we give some preparations.
Lemma 3.7. ([14]) κ := inf{‖v − w‖ : v, w ∈ K, v 6= w} > 0.
Lemma 3.8. For each c > 0 there exists δ > 0 such that

d

dv

(
G−1(v)

g(G−1(v))

)
≥ σ > 0 as |v| ≤ C.

Proof It follows from Lemma 2.1-(4)

d

dv

(
G−1(v)

g(G−1(v))

)
=

1− G−1(v)g′(G−1(v))
g′(G−1(v))

g2(G−1(v))
≥ 1

g2(G−1(v))
.

Since |v| ≤ C, we have that g2(G−1(v)) is bounded. Hence, the conclusion is proved. 2

Lemma 3.9. If {v1
n} and {v2

n} are bounded in H , then there exists C > 0, depending only on ‖v1
n‖ and ‖v2

n‖ such that∫
RN

|∇(v1
n − v2

n)|2dx+

∫
RN

V (x)

[
G−1(v1

n)

g(G−1(v1
n))
− G−1(v2

n)

g(G−1(v2
n))

]
(v1
n − v2

n)dx

≥ C
∫
RN

(|∇(v1
n − v2

n)|2 + V (x)(v1
n − v2

n)2)dx

= C‖v1
n − v2

n‖.
Proof We assume that v1

n 6= v2
n, otherwise the result is trivial. Let

zn :=
v1
n − v2

n

‖v1
n − v2

n‖
and hn :=

G−1(v1n)
g(G−1(v1n)) −

G−1(v2n)
g(G−1(v2n))

v1
n − v2

n

.

We proceed by contradiction and suppose that v1
n and v2

n satisfy∫
RN

(
|∇zn|2 + V (x)hn(x)z2

n

)
dx→ 0. (13)

From a direct computation, we derive h(x) = G−1(v)
g(G−1(v)) is an increasing function. Then hn(x) is positive if zn(x) 6= 0. Thus∫

RN

|∇zn|2dx→ 0 and

∫
RN

V (x)z2
ndx→ 1. (14)

For a given c > 0, set Ωn := {x ∈ RN : |v1
n| ≥ c or |v2

n| ≥ c}, Zn := RN \ Ωn. Hence, for any ε > 0, c may be chosen
such that |Ωn| ≤ ε. By Lemma 3.8, (13) and the Mean value theorem, one has

σ

∫
Zn

V (x)z2
ndx ≤

∫
Zn

V (x)hn(x)z2
ndx→ 0. (15)
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Letting ε sufficiently small and arguing as in (9)(with the same q) we derive∫
Ωn

V (x)z2
ndx ≤ C5ε

q−2
q ≤ 1

2
,

where C5 is independent of ε. This together with (15) contradict (14). 2

Lemma 3.10. If {v1
n} and {v2

n} are bounded in H , then for any ε > 0 there exists Cε > 0, depending only on the bound of
‖v1
n‖ and ‖v2

n‖ such that ∣∣∣∣∫
RN

ln(x)(v1
n − v2

n)

∣∣∣∣ dx ≤ ε‖v1
n − v2

n‖+ Cε|v1
n − v2

n|p,

where

ln(x) :=
f(x,G−1(v1

n))

g(G−1(v1
n))

− f(x,G−1(v2
n))

g(G−1(v2
n))

= l1n(x)− l2n(x).

Proof From (3) and Lemma 2.1 we obtain∣∣∣∣∫
RN

l1n(v1
n − v2

n)dx

∣∣∣∣ ≤ ∫
RN

ε|G−1(v1
n)|+ Cε|G−1(v2

n)|p−1

g(|G−1(v1
n)|)

|v1
n − v2

n|dx

≤
∫
RN

(C6ε|v1
n||v1

n − v2
n|+ C7Cε|v2

n|p−1|v1
n − v2

n|)dx

≤ C6ε|v1
n|2|v1

n − v2
n|2 + C7Cε|v2

n|p−1
p |v1

n − v2
n|p

≤ Cε‖v1
n − v2

n‖+ CCε|v1
n − v2

n|p.
Using the same way we have ∣∣∣∣∫

RN

l2n(v1
n − v2

n)dx

∣∣∣∣ ≤ Cε‖v1
n − v2

n‖+ CCε|v1
n − v2

n|p,

Ehere C only depends on the bound of ‖v1
n‖ and ‖v2

n‖ but is
independent of ε and the choice of v1

n and v2
n, we can replace

Cε by ε/2 and CCε by Cε/2. Thus the proof is completed. 2

Lemma 3.11. Let d ≥ c. If {z1
n}, {z2

n} ⊂ Ψd are two (PS)
sequences for Ψ, then either ‖z1

n − z2
n‖ → 0 as n → ∞ or

lim supn→∞ ‖z1
n − z2

n‖ ≥ γ(d) > 0, where γ(d) depends on

d but not on the particular choice of (PS) sequences.
Proof Let v1

n := m(z1
n) and v2

n := m(z2
n). Then {v1

n}
and {v2

n} are (PS) sequences for Ψ and these sequences are
bounded as {v1

n}, {v2
n} ⊂ Ψd. We discuss two cases.

case 1. |v1
n − v2

n|p → 0 as n → ∞. Lemmas 3.9 and 3.10
mean that for any ε > 0 and sufficiently large n,

C‖v1
n − v2

n‖ ≤
∫
RN

(|∇(v1
n − v2

n)|2 + V (x)hn(x)(v1
n − v2

n)2)dx

= 〈Ψ′(v1
n), v1

n − v2
n〉 − 〈Ψ′(v2

n), v1
n − v2

n〉+

∫
RN

ln(v1
n − v2

n)dx

≤ 2ε‖v1
n − v2

n‖+ Cε|v1
n − v2

n|p,
where hn and ln are defined in Lemmas 3.9 and 3.10.

Consequently, ‖v1
n − v2

n‖ → 0 and Lemma 3.6 means that ‖z1
n − z2

n‖ = ‖m−1(v1
n)−m−1(v2

n)‖ → 0.
case 2. |v1

n − v2
n| 6→ 0 as n→∞. From Lemma 1.21 in [16] there exist ε > 0 and yn ∈ RN such that∫

B1(yn)

(v1
n − v2

n)2dx = max
y∈RN

∫
B1(y)

(v1
n − v2

n)2dx ≥ ε for all n (16)

after passing to a subsequence if necessary. Because m, m−1, Ψ′, and ψ′ are equivalent with respect to the action of Zn defined
by (4), we may suppose that the sequence {yn} is bounded in RN . Passing to a subsequence if necessary there exist v1, v2, a1

and a2 such that
v1
n ⇀ v1, v2

n ⇀ v2, ‖v1
n‖ → a1, ‖v1

n‖ → a2, and Ψ′(v1) = Ψ′(v2) = 0.

By virtue of (16) we have v1 6= v2. This together with Lemma 3 deduce that

1√
3c
≤ ai ≤ ν(d) <∞,
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where ν(d) = sup{‖v‖ : v ∈ Ψd ∩M } and i = 1, 2 (ν(d) < ∞ is a consequence of Lemma 3.2). Assume that v1, v2 6= 0.
Then v1, v2 ∈M and z1 := m−1(v1) ∈ K, z2 := m−1(v2) ∈ K , v1 6= v2. Thus

lim inf
n→∞

‖z1
n − z2

n‖ = lim inf
n→∞

∥∥∥∥ v1

‖v1
n‖
− v2

‖v2
n‖

∥∥∥∥ ≥ ∥∥∥∥v1

a1
− v2

a2

∥∥∥∥ = ‖z1 − z2‖,

where b1 := ‖v1‖
a1 ≥

√
c
3

ν(d) and b2 := ‖v2‖
a2 ≥

√
c
3

ν(d) .
As ‖z1‖ = ‖z2‖ = 1, it is obvious that from the above inequalities

lim inf
n→∞

‖z1
n − z2

n‖ ≥ ‖b1z1 − b2z2‖ ≥ min{b1, b2}‖z1 − z2‖ ≥
κ
√

c
3

ν(d)
, (17)

where κ is the constant in Lemma 3.7. Therefore (17) means that lim infn→∞ ‖z1 − z2‖ ≥ γ(d) > 0, where γ(d) depends only
on d(via ν(d)).

If v2 = 0, then v1 6= 0 and

lim inf
n→∞

‖z1
n − z2

n‖ = lim inf
n→∞

∥∥∥∥ v1
n

‖v1
n‖
− v2

n

‖v2
n‖

∥∥∥∥ ≥ ‖v1‖
a1
≥
κ
√

c
3

ν(d)

The case v1 = 0 is similar. 2

As is well known that Ψ has a pseudo-gradient vector field
L : S \K → TS. Furthermore, as Ψ is even, we may assume
that L is odd. Set η : G→ S \K be the flow given by

d

dt
η(t, w) = −L(η(t, w)),

η(0, w) = w,
(18)

where GS := {(t, w) : w ∈ S \ K,T−(w) < t < T+(w)}
and (T−(w), T+(w)) is the maximal existence time for the
trajectory t 7→ η(t, w). Recall that η is odd in w from L
and Ψ(η(t, w)) is strictly decreasing by the properties of a
pseudogradient.

Set P ⊂ S, δ > 0 and define

Uδ(P ) := {w ∈ S : dist(w,P ) < δ}.

We now give some properties of Ψ and η, which comes from
[14], will be used in the proof of Theorem 1.1.

Lemma 3.12. Let d ≥ c. Then for all δ > 0 there is
ε = ε(δ) > 0 such that

(i) Ψd+ε
d−ε ∩K = Kd,

(ii) limt→T+(w) Ψ(η(t, w)) < d−ε forw ∈ Ψd+ε\Uδ(Kd).
Proof of Theorem 1.1 Set

Σ := {Ω ⊂ S : Ω = Ω̄, Ω = −Ω}.

Note that for Ω ⊂ Σ, the Krasnoselskii genus γ(Ω) is the
smallest integer k from [17, 18]. Then there exists an old
mapping Ω → Rk \ {0}. If there is no such mapping for any
k, then γ(Ω) := +∞. Furthermore, γ(∅) := 0. Define

Ck := inf{d ∈ R : γ(Ψd) ≥ k}, k ≥ 1.

Hence Ck is the number at which the set Ψd changes genus
and it is obvious to see that Ck ≤ Ck+1. Set k ≥ 1 and
d := Ck. From Lemma 3.7, Kd is either empty or a discrete
set, so γ(Kd) = 0 or 1. Due to the continuity property of

the genus there exists δ > 0 such that γ(ū) = γ(Kd), where
U := Uδ(Kd) and δ < k

2 . For such δ, choose ε > 0 such that
the results of Lemma 3.12 hold. Then for all w ∈ Ψd+ε \ U
there is t ∈ [0, T+(w)) such that Ψ(η(t, w)) < d − ε. Set
e = e(w) be the infimum of the time for which Ψ(η(t, w)) <
d− ε. Recalling that d− ε is not a critical value of Ψ, it is easy
to see that e is a continuous mapping by the implicit function
theorem. Because Ψ is even, we have e(−w) = e(w). Define
a mapping l : Ψd+ε \U → Ψd−ε by setting l(w) := η(ew,w).
Then l is odd and continuous. Consequently, it follows from
properties of the genus and the definition of ck that

γ(Ψd+ε) ≤ γ(Ū)+γ(Ψd−ε) ≤ γ(Ū)+k−1 = γ(Kd)+k−1.

If γ(Kd) = 0, then γ(Ψd+ε) ≤ k − 1, which contradicts to
the definition of ck. So γ(Kd) = 1 and Kd 6= 1 and Kd 6= ∅.
If ck+1 = ck = d, then γ(Kd) > 1. While this is impossible,
we must have ck+1 > ck andKck 6= ∅ for all k ≥ 1, a contrary
to (12). Thus the proof is completed. 2
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