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Abstract: In this thesis, we deal with the issues of the finite-time state estimation (FTSE) for a set of switched neural networks 

(SNNs), in which the hybrid effects of time-varying delays and leakage delay are taken into consideration. Therefore, the model 

of SNNs under discussion is quite comprehensive and more practical. In the light of an applicable piecewise 

Lyapunov-Krasovskii (L-K) functional which has double integral terms, some novel sufficient criteria are put forward with the 

average dwell time (ADT) technique, so that the estimation error system is finite-time boundedness (FTB). It is crucial to notice 

that the estimation results in our work are time-delay dependent, which depend on the leakage delay as well as the upper bound of 

the time-varying delays. The results show that the unknown gain matrix of the state estimator is achieved by solving a series of 

linear matrix inequalities (LMIs), which can be effortlessly tested with the MATLAB Toolbox. Moreover, by combining with 

free weight matrix method in the proof process, the results we obtained do not require the differentiability of time-varying delays 

any more, which is less conservative than some existing results. Finally, an example is performed with its numerical simulations 

to corroborate the efficiency of the theoretical results. 

Keywords: Finite-Time State Estimation, Switched Neural Networks, Time-Varying Delays, Leakage Delay 

 

1. Introduction 

Neural networks are the nonlinear macroscale adaptive 

dynamic system composed of many processing units. A lot of 

engineering applications of neural networks have been 

founded, for instance, image reparation, automation control 

and system identification [1–3]. Since the practical setting is 

fully complex and changeable, the structure of the networks 

may change unpredictably. Therefore, the idea of switching 

system is developed to solve the problem that the structure of 

neural networks may change due to volatile external factors. 

In recent years, SNNs have been extensively used in the field 

of high-speed signal processing, gene selection for DNA 

microarray analysis and artificial intelligence [4–6]. In 

addition, due to the limited switching speed of amplifiers or 

the limited propagation time of signals in biological networks, 

there are always inevitable delays in actual SNNs, which may 

give rise to undesirable dynamic behaviors, for instance, 

chaos, oscillation and multiple cycles [7-10]. Recently, the 

dynamic behaviors of delayed SNNs have attracted a lot of 

research efforts [11-13]. 

In practical engineering, the state of the system may not be 

completely determined by the output of the networks. It is 

often necessary to design observers to estimate each neuron 

with the output of the neural networks and achieve certain 

design goals by estimating the state of the neurons. At 

present, there are many results about state estimation of 

SNNs. For example, under the available output 

measurements and the multiple L-K functional technique, the 

exponential state estimation of switched interval neural 

networks with mixed delays has been carried out [14]. Based 

on a proper L-K functional, the author has derived a new 

sufficient condition making the estimation error system of 

SNNs be exponentially stable [15]. The state estimation of 

discrete-time SNNs with mode-dependent time-varying 

delays has been investigated in H∞  sense [16]. 

What should be noticed is that the design results of the 

above state estimator for SNNs are defined in an infinite time 

range. However, in practice, calculating the value of the 
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system state beforehand in order to remain within the 

specified range during the relevant time interval provides 

better transient performance and in turn prevents saturation 

from occurring [17-19]. Although some significant work has 

been done for the FTSE of non-switched delayed neural 

networks [20–22], few studies focused on the corresponding 

research for SNNs. Additionally, leakage delay existing in a 

negative feedback term is hard to process since it has quick 

tendency to destroy the system performance [23–25]. 

However, the leakage delay is often ignored in most past 

modeling of SNNs [26]. Therefore, it is of great theoretical 

significance to investigate the design of finite-time estimator 

for SNNs when the combined effects of time-varying delays 

and leakage delay are taken fully into account. For all we 

know, there is no relevant results on this issue yet, which 

motivates our study. 

In this thesis, we explore the issue of FTSE of the SNNs 

with time-varying delays and leakage delay. By constructing 

the appropriate piecewise L-K functional, employing ADT 

method and free-weighting matrix technique, some sufficient 

conditions are educed to make sure the FTB of the 

corresponding estimation error system. The existence and the 

characterization of the desired estimator can be achieved 

based on a series of LMIs. The results we obtained rely on 

both time-varying delays and leakage delay. Moreover, our 

results do not require the time delays to be differentiable, 

which cannot be applicable to the systems with inestimable 

or unknown time delays. The remaining part is arranged as 

follows. The model description and pre-knowledge are 

introduced in Section 2. The primary theorems are obtained 

in Section 3. An example is performed with its numerical 

simulations to corroborate the efficiency of the developed 

theoretical results in Section 4. The summary of our work is 

given in Section 5. 

Notations. Let ℝ , +
ℝ , n

ℝ , n m×
ℝ  be the set of real 

numbers, the set of all positive real numbers, the n

-dimensional real space, the n m× -dimensional real space, 

respectively. 0A <  ( 0A > ) denotes that matrix A  is a 

symmetric and negative definite (positive definite) matrix. 

The notation 1
A

−  and T
A  represent the inverse and 

transpose of matrix A , respectively. If A  and B  are 

symmetric matrices, A B>  means that A B−  is a positive 

definite matrix. ( )
max

Aλ  ( ( )
min

Aλ ) stands for the maximum 

(minimum) eigenvalue of matrix A . Unless otherwise 

specified, I is the identity matrix with appropriate 

dimensions. {1, 2, , }nΛ = … and {1, 2, , }N= …ℕ  is a finite set 

formed by the set of natural numbers. a b∨  denotes the 

maximum value of a  and b . 
1
( , ) { :C U V U Vϕ= →  is 

continuously differentiable }  for any interval U ⊆ ℝ  and set 

(1 )
k

V k n⊆ ≤ ≤ℝ . Notation ⊻  is the symmetric block in a 

matrix. 

2. Preliminaries 

This paper considers the SNNs with time-varying delays 

and leakage delay in the following form 

( ) ( ) ( )

( )

( ) ( )

( ) ( ) ( ( )) ( ( ( )))

          , 0,

( ) ( ) ( ( )),

( ) ( ), [ ,0],

t t t

t

t t

x t A x t B f x t C f x t t

J t

y t D x t E x t t

x t t t

σ σ σ

σ

σ σ

δ τ

τ
ϕ γ

 = − − + + −


+ >


= + −
 = ∈ −

ɺ

 (1) 

where
1 2

( ) ( ( ), ( ), , ( ))
T n

n
x t x t x t x t= ∈⋯ ℝ denotes the neural state 

vector of the system, ( )
q

y t ∈ℝ  is the measured output, 

1 1 2 2
( ( )) ( ( ( )), ( ( )), , ( ( )))

T n

n n
f x t f x t f x t f x t= ∈⋯ ℝ denotes the neuron 

activation function and 
( ) 1 ( ) 2 ( ) ( )

( , , , )
T n

t t t n t
J J J Jσ σ σ σ= ∈⋯ ℝ is an 

external input. 
( )t

Aσ , 
( )t

Bσ , 
( )t

Cσ , 
( )t

Dσ  and 
( )t

Eσ  are 

known real matrices with appropriate dimensions. Specifically, 

( )t
Aσ  is a positive diagonal matrix, and 

( )

n n

t
Bσ

×∈ ℝ , 

( )

n n

t
Cσ

×∈ ℝ are the connection weight matrices. The delay 

function ( )tτ  satisfies 0 ( )tτ τ< ≤ , where τ  is a positive 

constant. δ  is a leakage delay and γ τ δ= ∨ . 

1
( ) ([ , 0], )

n
t Cϕ γ∈ − ℝ  is an initial function. ( ) : [0, )tσ ∞ → ℕ  is 

a switching signal which is right continuous and piecewise 

constant function. As ( )t iσ = ∈ℕ , the ith subsystem is 

activated. 

Throughout this thesis, we assume that the trajectory ( )x t  

is continuous everywhere. Additionally, the number of 

switching is finite in any interval. 

Assumption 1. Every neural activation function satisfies 

1 2

1 2

( ) ( )
i i

i i

f f
z z

β β

β β
− +−

≤ ≤
−

, 1 2,β β∀ ∈ℝ , 1 2β β≠ , i ∈ Λ , 

where 
i

z
−  and 

i
z

+  are some real constants. For the 

convenience of demonstration, let  

1 1 1 2 2
diag{ , , , }

n n
Z z z z z z z

− + − + − += ⋯  

and 

1 1 2 2

2
diag{ , , , }

2 2 2

n n
z zz z z z

Z

− +− + − + ++ +
= ⋯ . 

For SNNs (1), the following full-order state estimator is 

proposed as follows 

( ) ( ) ( )

( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ( ( )))

ˆ          ( ( ) ( )), 0,

ˆ ˆ ˆ( ) ( ) ( ( )),

ˆ( ) ( ), [ , 0],

t t t

t t

t t

x t A x t B f x t C f x t t

J L y t y t t

y t D x t E x t t

x t t t

σ σ σ

σ σ

σ σ

δ τ

τ

ψ γ

= − − + + −

+ + − >

= + −

= ∈ −









ɺ

   

(2) 

where ˆ( )
n

x t ∈ℝ is the state estimation of ( )x t , 

1
( ) ([ , 0], )

n
t Cψ γ∈ − ℝ is an initial function, 

(t)
Lσ  is the estimator 

gain matrix that needs to be designed. Let the estimation error 

be ˆ( ) ( ) ( )t x t x tϖ = −  and define functions as 

ˆ( ) ( ( )) ( ( ))f t f x t f x tϖ = − , ˆ( ( )) ( ( ( ))) ( ( ( )))f t t f x t t f x t tϖ τ τ τ− = − − − . 

Hence, the estimation error system can be expressed in the 

following form by combining system (1) and (2) 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( ))

          ( ) ( ( )), 0,

( ) ( ) ( ) ( ), [ , 0].

t t t

t t t t

t A t B f t C f t t

L D t L E t t t

t t t t t

ϖσ σ ϖ σ

σ σ σ σ

ϖ ϖ δ τ

ϖ ϖ τ

ϖ ϕ ψ η γ

= − − + + −

− − − >

= − = ∈ −







ɺ

    (3) 

To prove the results, we need to draw into the below 

definitions and lemma. 

Definition 1 ([27]). Given three positive constants 1
c , 2

c , 

0
T  with 1 2

c c< , a matrix 0R >  and the switching signal ( )tσ , 

estimation error system (3) is FTB with respect to 

1 2 0
( , , , , )c c T R σ , if 

1

0 0

max sup ( ) ( ), sup ( ) ( )
T T

s s

s R s s R s c
γ γ

η η η η
− ≤ ≤ − ≤ ≤

≤
 
 
 

ɺ ɺ  

means that 

2
( ) ( )

T
t R t cϖ ϖ < , 0

[0, ]t T∀ ∈ . 

Definition 2 ([28]). For any 0s t≥ ≥  and the switching 

signal ( )tσ , ( , )N s tσ  represents switching numbers in the 

interval ,[ )t s . If 

1
(s, t)

a

s t
N Nσ τ

−
≤ +  

holds for 0
a

τ >  and 1
0N ≥ , then the a

τ  and 1
N  is said to 

be average dwell time and chattering bound, respectively. 

Lemma 1 ([29]). Given any matrix 0Y >  with appropriate 

dimensions and a function ( ) : [ , ]
n

a bς ⋅ → ℝ , such that the 

associated integrals are well defined, then 

( ) ( )( ) ( ) ( ) ( ) ( )
b b b

T T

a a a

s ds Y s ds b a s Y s dsς ς ς ς−∫ ∫ ∫� . 

3. Main Results 

In this section, by constructing suitable piecewise L-K 

functional and using ADT method, we now present the 

analysis results for the estimation error system (3) to be FTB. 

Theorem 1. Under Assumption 1, the estimation error 

systems (3) is FTB with respect to 1 2 0( , , , , )c c T R σ , if there 

exist positive scalars 1
c , 2

c , 0T  and i
α  with 1 2

c c< , n n×  

matrices 0
i

P > , 0
i

Q > , n n×  diagonal matrices 1
0

i
U > , 

2
0

i
U > , n n×  matrix i

S  and 2 2n n×  matrix 

1 2

3

0
i i

i

i

T T
T

T
= >
 
 
 ⊻

, 

such that the following inequalities hold for any i ∈ℕ , 

11 12 13 14 15 16

22 23 24 25 26

33 36

44

1

2

0 0
0,

0 0

0

i i i i i i

i i i i i

i i

i
i

i

i

U

U

Π Π Π Π Π Π

Π Π Π Π Π

Π Π
Π = <

Π

−

−

 
 
 
 
 
 
 
 
 
 

⊻

⊻ ⊻

⊻ ⊻ ⊻

⊻ ⊻ ⊻ ⊻

⊻ ⊻ ⊻ ⊻ ⊻

      (4) 

0

1 2 2 1
,

T
c c e

ακ κ −
�                 (5) 

and the ADT a
τ  satisfies 

0

2 1 0 1 2 1

ln

ln( ) ln( ) ln
,

a a

T h

c T c N h
τ τ

κ α κ
∗> =

− − −
        (6) 

where 

11 1 1

1i T T

i i i i i i i i i i
P L D D L P Q Z U Pα

δ
Π = − − − − − , 

12

i

i i i
S L DΠ = − , 

13 2

i

i i i i
P L E TΠ = − + , 

14

1i

i i i
P A Q

δ
Π = − + , 

15 2 1

i

i i i
P B Z UΠ = + , 

16

i

i i
PCΠ = , 

22 3

i T

i i i i
T Q S Sτ δΠ = + − − , 

23

i

i i i
S L EΠ = − , 

24

i

i i
S AΠ = − , 

25

i

i i
S BΠ = , 

26

i

i i
S CΠ = , 

33 1 2 2 1 2

i T

i i i i
T T T Z UτΠ = − − − , 

36 2 2

i

i
Z UΠ = , 

44

1i

i
Q

δ
Π = − , 

1 min
min( ( ))

i
i

Pκ λ
∈

=
ℕ

, 

( )2 2

2 max max 3 max

max

min

max( ( )) max( ( )) max( ( ))

( )
         

( )
,

i i i
i i i

P T Q

R

R

κ λ τ λ δ λ

λ

λ

∈ ∈ ∈
= + +

⋅

ℕ ℕ ℕ

 

max{ }
i

i

α α
∈

=
ℕ

, 1 2 3 4
max{ , , , }h h h h h= , 

with 

max

1

min

max( ( ))

min( ( ))

i
i

i
i

P

h
P

λ

λ
∈

∈

= ℕ

ℕ

, 
max

2

min

max( ( ))

min( ( ))

i
i

i
i

T

h
T

λ

λ
∈

∈

= ℕ

ℕ

, 

max 3

3

min 3

max( ( ))

min( ( ))

i
i

i
i

T

h
T

λ

λ
∈

∈

= ℕ

ℕ

, 
max

4

min

max( ( ))

min( ( ))

i
i

i
i

Q

h
Q

λ

λ
∈

∈

= ℕ

ℕ

. 

Proof. Construct L-K functional 
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4

( ) ( )

1

( ) ( )
t k t

k

V t V tσ σ
=

=∑ , 

where 

1 ( ) ( )
( ) ( ) ( )

T

t t
V t t P tσ σϖ ϖ= , 

1 ( ) 2 ( )

2 ( )
0 ( )

3 ( )

( ( ))
( )

( )

( ( ))
                ,

( )

T
t

t t

t

t

T T
V t

Ts

dsd
s

θ σ σ
σ

θ τ θ σ

ϖ θ τ θ

ϖ

ϖ θ τ θ
θ

ϖ

−

−
=

−

  
  

   

 
 
 

∫ ∫ ɺ

ɺ

⊻

 

0

3 ( ) 3 ( )
( ) ( ) ( )

t
T

t t
t

V t s T s dsdσ σ
τ θ

ϖ ϖ θ
− +

= ∫ ∫ ɺ ɺ , 

0

4 ( ) ( )
( ) ( ) ( )

t
T

t t
t

V t s Q s dsdσ σ
δ θ

ϖ ϖ θ
− +

= ∫ ∫ ɺ ɺ . 

Assume that ( )t iσ = , 1
[ , )

k k
t t t +∈  and ( )

k
t jσ − = , 

( , )i j ∈ℕ . Along the trajectories of system (3), the derivative 

of ki
V  ( )1, 2,3, 4k =  can be obtained 

1
( ) 2 ( ) ( ) 2 ( ) ( )

            2 ( ) ( ( ))

            ( )( ) ( )

             2 ( ) ( ( )),

              

T T

i i i i i

T

i i

T T T

i i i i i i

T

i i i

V t t P A t t P B f t

t PC f t t

t P L D D L P

E

t

t P L t t

ϖ

ϖ

ϖ ϖ δ ϖ

ϖ τ

ϖ ϖ

ϖ ϖ τ

= − − +

+ −

+ − −

− −

ɺ

      (7) 

1 2

2
( )

3

1 2

2 3
( )

( ( )) ( ( ))
  ( )

( ) ( )

        ( ) ( ( )) ( ( )) 2 ( ( )) ( )

            2 ( ( )) ( ( )) ( ) ( )       

  

T
t

i i

i
t t

i

T T

i i

t
T T

i i
t t

T Tt t t t
V t ds

Ts s

t t t T t t t t T t

t t T t t s T s ds

τ

τ

ϖ τ ϖ τ

ϖ ϖ

τ ϖ τ ϖ τ ϖ τ ϖ

ϖ τ ϖ τ ϖ ϖ

−

−

− −
=

= − − + −

− − − +

    
    
    

∫

∫

ɺ

ɺ ɺ

ɺ ɺ

⊻

1 2 2

2 3

      ( ( ))( ) ( ( ))

            2 ( ( )) ( ) ( ) ( ) ,

T T

i i i

t
T T

i i
t

t t T T T t t

t t T t s T s ds
τ

ϖ τ τ ϖ τ

ϖ τ ϖ ϖ ϖ
−

≤ − − − −

+ − + ∫ ɺ ɺ

      

 (8) 

0

3 3 3

0

3 3

3 3

( ) ( ( ) ( ) ( ) ( ))

        ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ,

T

i i i

T T

i i

t
T T

i i
t

V t t T t t T t d

t T t t T t d

t T t s T s ds

τ

τ

τ

ϖ ϖ ϖ θ ϖ θ θ

τϖ ϖ ϖ θ ϖ θ θ

τϖ ϖ ϖ ϖ

−

−

−

= − + +

= − + +

= −

∫

∫

∫

ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

    (9) 

0

4

0

( ) ( ( ) ( ) ( ) ( ))

        ( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( ) .

T

i i i

T T

i i

t
T T

i i
t

V t t Q t t Q t d

t Q t t Q t d

t Q t s Q s ds

δ

δ

δ

ϖ ϖ ϖ θ ϖ θ θ

δϖ ϖ ϖ θ ϖ θ θ

δϖ ϖ ϖ ϖ

−

−

−

= − + +

= − + +

= −

∫

∫

∫

ɺ ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ ɺ ɺ

 

By Lemma 1, there is 

( ) ( )1
( ) ( ) ( ) ( )

1
                             ( ( ) ( )) ( ( ) ( ))

1 2
                             ( ) ( ) ( ) ( )

                         

T
t t t

T

i i
t t t

T T

i

T T

i i

s Q s ds s ds Q s ds

t t Q t t

t Q t t Q t

δ δ δ
ϖ ϖ ϖ ϖ

δ

ϖ ϖ δ ϖ ϖ δ
δ

ϖ ϖ ϖ ϖ δ
δ δ

− − −
− ≤ −

= − − − − −

= − + −

∫ ∫ ∫ɺ ɺ ɺ ɺ

1
       ( ) ( ),

T

i
t Q tϖ δ ϖ δ

δ
− − −

 

then 

4

1
( ) ( ) ( ) ( ) ( )

2 1
           ( ) ( ) ( )) ( ).

T T

i i i

T T

i i

V t t Q t t Q t

t Q t t Q t

δϖ ϖ ϖ ϖ
δ

ϖ ϖ δ ϖ δ ϖ δ
δ δ

≤ −

+ − − − −

ɺ ɺ ɺ

     (10) 

In addition, note that 

2 ( ) ( ( ) ( ))

  ( )( ) ( ) 2 ( ) ( )

     2 ( ) ( ) 2 ( ) ( ( ))

     2 ( ) ( ) 2 ( ) ( ( ))

0

.

T

i

T T T

i i i i

T T

i i i i

T T

i i i i i i

t S t t

t S S t t S A t

t S B f t t S C f t t

t S L D t t S L E t t

ϖ ϖ

ϖ ϖ ϖ

ϖ ϖ ϖ ϖ δ

ϖ ϖ τ

ϖ ϖ ϖ ϖ τ

= − +

= − − − −

+ + −

− − −

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ

ɺ ɺ

     (11) 

Moreover, for any n n×  diagonal matrices 1
0

i
U > , 

2
0

i
U > , We get from Assumption 1 that 

1 1 2 1

1

( ) ( )
0

( ) ( )

T

i i

i

t Z U Z U t

f t U f tϖ ϖ

ϖ ϖ−
≤

    
    
    ⊻

      (12) 

and 

1 2 2 2

2

( ( )) ( ( ))
0

( ( )) ( ( ))

T

i i

i

t t Z U Z U t t

f t t U f t tϖ ϖ

ϖ τ ϖ τ

τ τ

− − −
≤

− −

    
    
    ⊻

.   (13) 

From (7)-(13), one has 

1 1

2

2 1

1
( ) ( )( ) ( )

           2 ( ) ( )

           2 ( )( ) ( ( ))

1
           2 ( )( ) ( )

           2 ( )( ) ( )

           2

T T T

i i i i i i i i i

T

i i i

T

i i i i

T

i i i

T

i i i

T

V t t P L D D L P Q Z U t

t S L D t

t P L E T t t

t P A Q t

t P B Z U f tϖ

ϖ ϖ
δ

ϖ ϖ

ϖ ϖ τ

ϖ ϖ δ
δ

ϖ

ϖ

≤ − − − −

−

+ − + −

+ − + −

+ +

+

ɺ

ɺ

3

( ) ( ( ))

           ( )( ) ( )

           2 ( ) ( ( ))

           2 ( ) ( )

           2 ( ) ( )

           2 ( ) ( ( ))

          ( (

i i

T T

i i i i

T

i i i

T

i i

T

i i

T

i i

T

t PC f t t

t T Q S S t

t S L E t t

t S A t

t S B f t

t S C f t t

t t

ϖ

ϖ

ϖ

τ

ϖ τ δ ϖ

ϖ ϖ τ

ϖ ϖ δ

ϖ

ϖ τ

ϖ τ

−

+ + − −

− −

− −

+

+ −

+ −

ɺ ɺ

ɺ

ɺ

ɺ

ɺ

1 2 2 1 2
))( ) ( ( ))

T

i i i i
T T T Z U t tτ ϖ τ− − − −
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2 2

1

2

1

          2 ( ( )) ( ( ))

1
          ( ) ( )

          ( ) ( )

          ( ( )) ( ( ))

      ( ) ( ) ( ),

T

i

T

i

T

i

T

i

T

i i i

t t Z U f t t

t Q t

f t U f t

f t t U f t t

t t V t

ϖ

ϖ ϖ

ϖ ϖ

ϖ τ τ

ϖ δ ϖ δ
δ

τ τ

ξ ξ α

+ − −

− − −

−

− − −

= Π +

              (14) 

where 

( )( ) ( ), ( ), ( ( )), ( ), ( ), ( ( ))
T

T T T T T T
t t t t t t f t f t tϖ ϖξ ϖ ϖ ϖ τ ϖ δ τ= − − −ɺ , 

which, together with (4), yields that 

1
( ) ( ) ( )

i i i i i
V t V t V tα α≤ ≤ɺ .            (15) 

Integrating both sides of (15) from k
t  to t , it can be 

obtained that 

( ) ( )

1
( ) ( ) ( ), [ , )i k k

t t t t

i i k i k k k
V t e V t e V t t t t

α α− −
+≤ ≤ ∈ .    (16) 

On the other hand, 
nϖ∀ ∈ℝ , it holds that 

max

max

min

max( ( ))

( ) ( ) ( ) ( ) ( ) ( ) ( )
min( ( ))

i
T T Ti

i i j

i
i

P

t P t P t t t P t
P

λ
ϖ ϖ λ ϖ ϖ ϖ ϖ

λ
∈

∈

≤ ≤ ℕ

ℕ

, 

then, it yields 

1 1 1i j
V h V≤ . 

Using similarity estimation, the following inequality can be 

obtained 

2 2 2i j
V h V≤ , 

3 3 3i j
V h V≤ , 

4 4 4i j
V h V≤ . 

Denote 1 2 3 4
max{ , , , }h h h h h= , one has 

( ) ( )
i j

V t hV t≤ , 

which implies that 

( ) ( )
( ) ( )

k
k

t k kt
V t hV tσ σ −

−≤ .            (17) 

Hence, for 1h ≥ , 0
[0, )t T∈ , substituting (17) into (16), we 

get from the definition of ADT that 

0 0

0

1

0

( ,0) ( 0)

( ) (0)

(0)
         

( ) (0)

(0) .a

N T T

t

T
N

T

V t h V e

e h V

σ α
σ σ

α τ
σ

−

+

≤

≤

         (18) 

Furthermore, it is clear that 

( ) min

min

1

( ) ( ) ( ) ( )

            min( ( )) ( ) ( )

            ( ) ( ),

T

t i

T

i
i

T

V t P t t

P t t

t t

σ λ ϖ ϖ

λ ϖ ϖ

κ ϖ ϖ

∈

≥

≥

=

ℕ

         (19) 

and 

0 0

(0) (0) 3 (0)

0 0

(0)

2

max max 3

2

max

0

(0) (0) (0) ( ) ( )

               ( ) ( )

           max( ( )) (0) (0) ( max( ( ))

               max( ( ))) sup

T T

T

T

i i
i i

i
i s

V P s T s dsd

s Q s dsd

P T

Q

σ σ σ
τ θ

σ
δ θ

γ

ϖ ϖ ϖ ϖ θ

ϖ ϖ θ

λ ϖ ϖ τ λ

δ λ ϖ

−

−

∈ ∈

∈ − ≤ ≤

= +

+

≤ +

+ ⋅

∫ ∫

∫ ∫

ℕ ℕ

ℕ

ɺ ɺ

ɺ ɺ

ɺ

2

max max 3

2

max

min

0 0

               

( ) ( )

(max( ( ) max( ( ))

1
                 max( ( ))) 

( )

                 max sup ( ) ( ), sup ( ) ( ) .

T

i i
i i

i
i

T T

s s

s s

P T

Q
R

s R s s R s
γ γ

ϖ

λ τ λ

δ λ
λ

η η η η

∈ ∈

∈

− ≤ ≤ − ≤ ≤

≤ +

+ ⋅

⋅
 
 
 

ℕ ℕ

ℕ

ɺ

ɺ ɺ

 (20) 

By combining (18)-(20), what can be concluded is that  

0

1

0

0

1

0

1

1 ( )

max

(0)

max

   ( ) ( ) ( ) ( ) ( )
( )

                            (0)

                            (max( ( ))                            

                      

a

a

T T

t

T
N

T

T
N

T

i
i

t R t t t V t
R

e h V

e h P

σ

α τ
σ

α τ

κ
ϖ ϖ κ ϖ ϖ

λ

λ

+

+

∈

≤ ≤

≤

≤
ℕ

2

max 3

2

max

min

0 0

         max( ( ))

1
                               max( ( ))) 

( )

                              max sup ( ) ( ), sup ( ) ( ) .

i
i

i
i

T T

s s

T

Q
R

s R s s R s
γ γ

τ λ

δ λ
λ

η η η η

∈

∈

− ≤ ≤ − ≤ ≤

+

+ ⋅

⋅
 
 
 

ℕ

ℕ

ɺ ɺ

 

 

(21) 

From Definition 1, it follows 

0
1

01
max

max

2

max 3

2

max 1

min

( ) ( ) (max( ( ))
( )

                                     max( ( ))

1
                                     max( ( )))

( )
.

a

T
N

TT

i
i

i
i

i
i

t R t e h P
R

T

Q c
R

α τκ
ϖ ϖ λ

λ

τ λ

δ λ
λ

+

∈

∈

∈

≤

+

+ ⋅ ⋅

ℕ

ℕ

ℕ

  (22) 

From (22), we can get  

0

1

0

max

2

max 3

2

max

max

1

min 1

( ) ( ) (max( ( ))

                       max( ( ))

                       max( ( )))

( ) 1
                       

( )

a

T
N

TT

i
i

i
i

i
i

t R t e h P

T

Q

R
c

R

α τϖ ϖ λ

τ λ

δ λ

λ

λ κ

+

∈

∈

∈

≤

+

+

⋅ ⋅ ⋅

ℕ

ℕ

ℕ

 

0

1

0 2

1

1

                 .a

T
N

T
e h c

α τ κ

κ

+

≤ ⋅ ⋅              (23) 
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When 1h = , combining (5) and (23), one has 

0 2

1 2

1

( ) ( )
TT

t R t e c c
α κ

ϖ ϖ
κ

≤ ⋅ ≤ .              (24) 

While 1h > , combining (6) and (23), one has 

00 1 2

1

2 1

ln( ) ln
TT c

N h e
c

α

α

κ

τ κ
−+ ≤

   
   

  
, 

which means that 

2
( ) ( )

T
t R t cϖ ϖ ≤ .              (25) 

Hence, for 1h ≥ , according to (24) and (25), it follows 

2
( ) ( )

T
t R t cϖ ϖ ≤ , 0

[0, ]t T∈ . 

Therefore, the estimation error system (3) is FTB with 

respect to ( )1 2 0
, , , ,c c T R σ , which completes the proof. 

Remark 1. Until now, a lot of interesting results 

concerning the state estimation of SNNs with time-varying 

delays have been reported [30-32]. Note that all the above 

results focus on the systems with differentiable time delays 

( )tτ , which cannot be applied to the systems with uncharted 

or inestimable time delays. In our work, by using the 

appropriate L-K functional related to the derivative of the 

variable of state and leading into the auxiliary equation in 

(11), the differentiability restriction of the time delays 

imposed in the above literatures is eliminated completely. 

It should be noted that Theorem 1 is obtained when the 

gain matrix of estimator is known. Actually, 
( )t

Lσ  is difficult 

to know in advance and needs to be determined in this 

circumstance. Therefore, the method to design the state 

estimator gain is given in the following. 

Theorem 2. Under Assumption 1, the estimation error 

system (3) is FTB with respect to 1 2 0
( , , , , )c c T R σ , if there 

exist scalars 1
c , 2

c , 0
T , i

α , i
µ  with 1 2

c c< , n n×  

matrices 0
i

P > , 0
i

Q > , n n×  diagonal matrices 1
0

i
U > , 

2
0

i
U > , n n×  matrix i

X  and 2 2n n×  matrix 

1 2

3

0
i i

i

i

T T
T

T
= >
 
 
 ⊻

, 

such that the following inequalities hold for any i ∈ ℕ , 

11 12 13 14 15 16

22 23 24 25 26

33 36

44

1

2

0 0
0,

0 0

0

i i i i i i

i i i i i

i i

i
i

i

i

U

U

Π Π Π Π Π Π

Π Π Π Π Π

Π Π
Π = <

Π

−

−

 
 
 
 
 
 
 
 
 
 

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ

⊻

⊻ ⊻

⊻ ⊻ ⊻

⊻ ⊻ ⊻ ⊻

⊻ ⊻ ⊻ ⊻ ⊻

      (26) 

0

1 2 2 1
,

T
c c e

ακ κ −≤                (27) 

and the ADT a
τ  satisfies 

0

2 1 0 1 2 1

ln

ln( ) ln( ) ln
,

a a

T h

c T c N h
τ τ

κ α κ
∗> =

− − −
      (28) 

where 

11 1 1

1i T T

i i i i i i i i
X D D X Q Z U Pα

δ
Π = − − − − −ɶ , 

12

i

i i i
X DµΠ = −ɶ , 

13 2

i

i i i
X E TΠ = − +ɶ , 

14

1i

i i i
P A Q

δ
Π = − + , 

15 2 1

i

i i i
P B Z UΠ = + , 

16

i

i i
PCΠ = , 

22 3
2

i

i i i i
T Q Pτ δ µΠ = + −ɶ , 

23
 

i

i i i
X EµΠ = −ɶ , 

24

i

i i i
P AµΠ = −ɶ , 

25

i

i i i
P BµΠ =ɶ , 

26

i

i i i
PCµΠ =ɶ , 

33 1 2 2 1 2

i T

i i i i
T T T Z UτΠ = − − − , 

36 2 2
 

i

i
Z UΠ = , 

44

1i

i
Q

δ
Π = − , 

1 min
min( ( ))

i
i

Pκ λ
∈

=
ℕ

, 

( )2 2

2 max max 3 max

max

min

max( ( )) max( ( )) max( ( ))

( )
         

( )
,

i i i
i i i

P T Q

R

R

κ λ τ λ δ λ

λ
λ

∈ ∈ ∈
= + +

⋅

ℕ ℕ ℕ

 

max{ }
i

i

α α
∈

=
ℕ

, 1 2 3 4
max{ , , , }h h h h h= . 

Furthermore, the applicable state estimator gain is 1

i i i
L P X

−= . 

Proof. By defining i i i
S Pµ=  and i i i

PL X= , inequalities (4) 

in Theorem 1 are reduced to (26). Then the state estimator 

gain can be designed as 1

i i i
L P X

−= . The proof is done. 

Remark 2. The FTSE issue for various kind of delayed 

neural networks have been studied in recent achievements 

[20-22]. Compared with them, very little attention was paid to 

the corresponding researches for delayed SNNs. The authors 

studied the FTSE in H∞  sense for SNNs with time-varying 

delays by making use of L-K functional coupled with ADT 

method [32]. However, leakage delay is excluded, and time 

delays are required to be differentiable in their results. In our 

work, the conditions established in Theorem 2 rely both on the 

upper bound of time-varying delays and leakage delay. The 

estimator gain can be obtained by solving a family of LMIs 

without requiring time-varying delays to be differentiable. 

Especially, when 0δ = , the estimation error system (3) 

reduces to 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ( ) ( )

            ( ( )) ( ( )), 0,

( ) ( ) ( ) ( ), [ , 0],

)
t t t t

t t t

t A L D t B f t

C f t t L E t t t

t t t t t

σ σ σ σ ϖ

σ ϖ σ σ

ϖ ϖ

τ ϖ τ

ϖ ϕ ψ η γ

= − + +

+ − − − >

= − = ∈ −







ɺ

   (29) 
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Then the following corollary can be obtained. 

Corollary 1. Under Assumption 1, the estimation error 

system (3) is FTB with respect to 1 2 0
( , , , , )c c T R σ , if there 

exist scalars 1
c , 2

c , 0
T , i

α , i
µ  with 1 2

c c< , n n×  

matrices 0
i

P > , n n×  diagonal matrices 1
0

i
U > , 2

0
i

U > , 

n n×  matrix i
X  and 2 2n n×  matrix 

1 2

3

0
i i

i

i

T T
T

T
= >
 
 
 ⊻

, 

such that the following inequalities hold for any i ∈ ℕ , 

11 12 13 14 15

22 23 24 25

33

1

2

0,0 0

0

i i i i i

i i i i

i
i

i

i

U

U

Π Π Π Π Π

Π Π Π Π

Π = <Π

−

−

 
 
 
 
 
 
  
 

⊻

⊻ ⊻

⊻ ⊻ ⊻

⊻ ⊻ ⊻ ⊻

        (30) 

0

1 2 2 1
,

T
c c e

ακ κ −≤              (31) 

and the ADT a
τ  satisfies 

0

2 1 0 1 2 1

ln

ln( ) ln( ) ln
,

a a

T h

c T c N h
τ τ

κ α κ
∗> =

− − −
      (32) 

where 

11 1 1

i T T T

i i i i i i i i i i i
P A A P X D D X Z U PαΠ = − − − − − − , 

12

i

i i i i i i
P A X Dµ µΠ = − − , 

13 2

i

i i i
X E TΠ = − +ɶ , 

14 2 1

i

i i i
PB Z UΠ = + , 

15

i

i i
PCΠ = , 

22 3
2

i

i i i
T Pτ µΠ = − , 

23

i

i i i
X EµΠ = −ɶ , 

24

i

i i i
PBµΠ = , 

25

i

i i i
PCµΠ = , 

33 1 2 2 1 2

i T

i i i i
T T T Z UτΠ = − − − , 

35 2 2

i

i
Z UΠ = , 

1 2 3
max{ , , }h h h h= , 

( )2 max

2 max max 3

min

( )
max( ( )) max( ( )

( )
i i

i i

R
P T

R

λ
κ λ τ λ

λ∈ ∈
= +

ℕ ℕ

, 

and other parameters are the same as in Theorem 2. 

4. Illustrative Example 

A numerical example with its simulation results is supplied 

to prove the validity and applicability of the raised results.  

Consider estimation error system (3) with two neurons 

characterized by the following parameters 

1

0.24 0

0 0.4
A =

 
 
 

, 
2

0.5 0

0 0.3
A =

 
 
 

, 

1

0.55 0.3

0.2 0.9
B

−
=
 
 
 

, 
2

0.6 0.9

0.1 0.5
B

− −
=

− −

 
 
 

, 

1

0.98 0.21

0.19 0.65
C =

−

 
 
 

, 
2

0.5 0.7

0.9 0.3
C

−
=

− −

 
 
 

, 

1

0.9 0.5

0.9 0.5
D

−
=

−

 
 
 

, 
2

1.2 0.9

0.1 1.4
D

−
=

− −

 
 
 

, 

1

0.8 0.47

0.81 0.58
E

−
=

−

 
 
 

, 
2

1.35 0.8

0.21 1.25
E

−
=
 
 
 

, 

tanh(0.6 )
( )

tanh(0.8 )

s
f s

s
=
 
 
 

, ( ) 0.09 0.01sinttτ = + . 

It can be seen that 1
diag{0, 0}Z = , 2

diag{0.3,0.4}Z = . Given 

scalars 0.1τ = , 0.1δ = , 1
1.6µ =  and 2

1.6µ = . We consider 

the case that 1
1c = , 2

30c = , 0
10T = , 1

0.01α = , 2
0.01α =  

and R I= . In order to solve the unknown matrices 

conveniently, the following positive definite diagonal 

matrices are given 

11

1.5945 0

0 1.5945
U =

 
 
 

, 
12

0.2571 0

0 0.2571
U =

 
 
 

, 

21

0.1409 0

0 0.1409
U =

 
 
 

,
22

0.0105 0

0 0.0105
U =

 
 
 

. 

Using the MATLAB LMI Toolbox to solve the LMIs in 

Theorem 2, we come up with the following feasible solutions: 

1

0.1047 0.0232

0.0232 0.1295
P

−
=

−

 
 
 

, 
2

0.0784 0.0105

0.0105 0.0918
P =

 
 
 

, 

1

0.7766 0.0402

0.0402 0.9611
Q =

 
 
 

, 
2

0.7223 0.0146

0.0146 0.7256
Q =

 
 
 

, 

1

0.3556 0.2265

1.3359 1.2525
X =

− −

 
 
 

, 
2

0.0192 0.0107

0.0126 0.0397
X

− −
=

−

 
 
 

, 

1

0.8007 0.1441 0.2366 0.0284

0.1441 1.1250 0.0758 0.1332

0.2366 0.0758 0.8425 0.0074

0.0284 0.1332 0.0074 1.0588

T

− −

− −
=

−

−

 
 
 
 
 
 

, 

2

1.7493 0.1149 0.2778 0.0063

0.1149 1.7159 0.0114 0.3065

0.2778 0.0114 0.7250 0.0287

0.0063 0.3065 0.0287 0.7525

T =

 
 
 
 
 
 

, 

and the gain matrices of the state estimator are designed as 

1

1 1 1

1.1591 0.0244

10.1121 9.6703
L P X

−= =
− −

 
 
 

, 
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1

2 2 2

0.2670 0.0800

0.1674 0.4235
L P X

− − −
= =

−
 
 
 

. 

In addition, the lower bound of ADT is calculated as
*

6.3799
a

τ = and we choose 6.4799
a

τ = . By Theorem 2, the 

estimation error system (3) is FTB with respect to 

(1, 30,10, , )I σ . When the initial functions are given by 

0.12
( )

0.15
tϕ =

 
 
 

, 
0.55

( )
0.54

tψ
−

=
−

 
 
 

, 

the simulation results are shown in figures 1-4. Figures 1 and 2 

are the real states 1
( )x t  and 2

( )x t  with their estimations 1̂
( )x t  

and 2
ˆ ( )x t , respectively. Figure 3 represents the trajectory of 

( ) ( )
T

t R tϖ ϖ  and what can be seen is that the validity of 

Theorem 2 guarantees ( ) ( )
T

t R tϖ ϖ  below the given 2
c  in the 

interval 0
[0, ]T . Figure 4 depicts the switching signal ( )tσ  

and switching instants. The simulation results indicate that the 

state estimator can track the state of delayed SNNs, which 

verifies the validity and correctness of the developed method. 

 

Figure 1. The state trajectory of 
1

( )x t  and its estimation 
1

ˆ ( )x t . 

 

Figure 2. The state trajectory of 
2

( )x t  and its estimation 
2

ˆ ( )x t . 

 

Figure 3. The trajectory ( ) ( )
T

t R tϖ ϖ  of estimation error system (3). 

 

Figure 4. The switching signal ( )tσ  and switching instants. 

5. Conclusion 

This article has gone into the issue of FTSE for a set of 

SNNs with leakage delay and time-varying delays. The L-K 

functional method and ADT switching laws have been 

employed to deduce some sufficient criteria, which can make 

the estimation error system (3) be FTB. The characterization 

of the estimator gain has been realized by solving certain 

LMIs. The obtained sufficient conditions are delay-dependent 

and do not require the time delays to be differentiable. Finally, 

an example is performed with its numerical simulations to 

corroborate the efficiency of the developed results. As we all 

know, SNNs have been studied extensively in various fields 

including biology, sociology and physics. Therefore, 

searching other analysis technique and other control methods 

for SNNs to acquire the less conservative results in finite-time 

sense will be our next work. 
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