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Abstract 

Lassa virus is transmitted from rodents to humans, but it is not known whether humans can transmit Lassa fever to rats. The virus 

is thought to spread to humans through contact with contaminated food or surfaces. Other forms of infection include handling 

rodents for food (people often get rodent blood and urine on their hands) and bites. It can also spread through the use of 

contaminated medical equipment, such as reusing needles. The state variables of the Lassa Fever model equation is expressed as 

nonlinear ordinary differential equations in the technique of an initial value problem (IVP) having 10 parameters. As a result of 

measuring the spread of Lassa fever and determining the stability equilibrium, Lassa fever was found to be stable at an 

equilibrium point ε0 for which the basic reproduction number R0 < 1. This paper optimized three control measures as a means to 

limit the spread of Lassa fever. The first two measures - regular hand washing and keeping homes and environment clean reduced 

the rate and impact of transmission between rodents and humans and the treatment of Lassa fever patients reduce transmission to 

human hosts, which were achieved by the operation of Pontryagin‟s Maximum Principle. Therefore, the results of this study 

demonstrate that the joint control measures adopted in this paper are effective strategies to combat the spread of disease. 
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1. Introduction 

Lassa fever which is an acute viral hemorrhagic disease 

belonging to several countries in West Africa, such as Benin, 

Ghana, Guinea, Liberia, Mali, Sierra Leone, and Nigeria [18]. 

The first case of this disease was reported in the 1950s, and 

the virus was identified in 1969 following the deaths of two 

missionary nurses in Lhasa, Nigeria. Lassa fever is endemic in 

Nigeria and outbreaks occur almost every year in different 

parts of the country [1, 3]. The Nigeria Center for Disease 

Control initiates regular report on Lassa fever supervision [2]. 

Lassa virus is present in wild rats that have multiple mam-

maries (udders) and excrete the virus in their urine and feces, 

They are common in rural areas of tropical Africa and often 

live in and around homes [5, 6]. The latent period for Lassa 

fever is 2-days to 3-weeks [5]. This infection is transmitted 

from rodents to humans and, to a lesser extent, from humans 

to humans. Infected rodents spread the virus throughout their 

lives and can spread the virus through urine, saliva, respira-

tory tract, and open blood vessels, even if they do not show 

clinical symptoms [4, 5]. Transmission from rodents to hu-

mans occurs through direct contact with the urine, feces, or 

saliva of infected rodents and discharge or secretion resulting 

from contact with infectious substances or consumption of 
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food contaminated with feces [8]. In 2017, Innocent et al., 

formulated a Lassa fever model with measures to curtail it, 

studied the epidemiology of the disease, recommended 

avoidance of contact with virus-carrying rodents, and intro-

ducing human vaccines [12]. Martins et al., in their study 

developed a mathematical model to control the spread of lassa 

fever, analyzing the existence and stability of a lassa fe-

ver-free equilibrium [10]. Abdulkarim et al., discussed the 

objective factors and mortality rates lassa fevr in Bauchi State, 

Nigeria were data collected from 2015 to 2018 were used to 

show an increase in morbidity and mortality and the majority 

of deaths was shown to occurring within 7 days of symptom 

onset [11]. 

Patrick et al. [7] proposed a mathematical model of Lassa 

fever transmission dynamics that included isolation and 

treatment as control strategies, their numerical simulations 

showed that the rate of spread of infection is an important 

parameter for the emergence of infectious disease. Therefore, 

efforts should be made to minimize transmission parameters 

to ensure eradication. Another model for the isolation of 

symptomatic Lassa fever was presented in [9]. This study 

extends studies [7, 9] by optimizing the prescribed control 

measures adopted by MEDECINS SANS FRONTERES [15] 

in the areas of regular hand washing and food hygiene, 

keeping homes and community environments clean, and 

treating patients infected with Lassa fever. This article ex-

periments with the Forward-Backward Sweep approach, 

which uses the order four Runge-Kutta method to confirm the 

effectiveness of the control measures by the operation of the 

Pontryagin‟s Maximum Principle to determine how the pro-

liferate of the Lassa Fever can be limited. Additional, this 

article will also examines the incidence and recurrence rates 

of infection in Lassa fever survivors. 

2. Assumptions of the Lassa Fever Model  

a. All state variables and parameters are assumed to be 

positive. 

b. The entire population is vulnerable to Lassa fever 

c. There is believed to be an even mix infected and sus-

ceptible individuals. 

d. Some recovered individuals may return to the suscepti-

ble class. 

e. The entire population is at risk equal of Lassa Fever, 

regardless age or health condition. 

2.1. Lassa Fever Model Equations 

The state variables of the Lassa Fever model equation is 

expressed as nonlinear ordinary differential equations in the 

technique of an initial value problem (IVP) having 10 pa-

rameters. The human population is divided into four classes; 

Susceptible  HS , Exposed  HE , Infected  HI , and Re-

covered  HR  compartments and the rodent populations are 

divided into two; Susceptible  RS , and Infected  RI  at t  

respectively. The susceptible people HS  go to the exposed 

section HE  to update population of exposed class to 

 1 2
H

H R
H

S
I I

N
  . From the exposed population, 3 HE  

persons are transfer from HE  compartment to the infection 

ward HI  and, as a result of compliance with treatment and 

prevention measures, 4 HI  persons move to the recovery 

group. Finally, the susceptible rodents RS  move to the in-

fected compartment RI  and update the number of infected 

rodents to 
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Figure 1. Model Diagram. 

Where  1 2 .H
H R

R

S
I I

N
    

Table 1. Summary of Parameters and meaning. 

Parameters Meaning (Dimension: Time-1) 

H  Recruitment rate for humans 
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Parameters Meaning (Dimension: Time-1) 

R  Recruitment rate for rodent 

1  Contact rate of humans 

2  Contact rate of rodents 

3  Progression rate to the infectious class 

4  Immunity lost rate  

5  
Rate at which recovered individuals go back to the 

susceptible class 

  Lassa Fever induced death rate 

H  Natural death rate of human 

R  Natural death rate of rodents 

2.2. Scaling of the Model 

To facilitate the analysis of equation 1 of the Lassa fever 

model, the ratio of the give populations is determined by 

scaling the population of each class based on the total number 

of species. Considering different populations, ( ),N t  and the 

ratio of every section within the species is given as: 

,H
h

H

S
s
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 it follows that  ,   ,   H h H H h HS s N E e N 

,    ,   ,    and  H h H H h H R r R R r RI i N R r N S s N I i N    . 

Rat population was estimated 7 billion in the world and this 

means that 1 rat for every human [16] i.e 
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After some simplification, we have 
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Where the dimensionless parameters are 

1 2,    ,   
h h
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2.3. Lassa Fever Model Properties 

The Lassa Fever model (3) covers both the population of 
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humans and rodents, the variables and parameters of the Lassa 

fever model are all non-negative for 0t  . 

Theorem 1: The Lassa fever model 1 of the initial condition 

in 4R  and 2R  are positively invariant in 

 
1

, , , :h h h h h h h h hs e i r s e i r
m

 
      
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 and 

 
1

, :r r r r rs i s i
n

 
    


 

Proof 

The Lassa fever system (3) is split into two sections, i.e the 

class of humans HN  and the class of rodents RN , defined 

by 

h h h h hN s e i r                (4) 

r r rN s i                 (5) 

Let 4 2 6
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And equation (5), yield 
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When t   
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Therefore  
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 
1

0hN
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  and  
1

0   rN
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 respectively. This is an indi-

cation that the solutions of the Lassa Fever model (3) fall in 

the zone. 
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3. Existence of Lassa Fever Free 

Equilibrium and the Basic 

Reproduction Number 

From the Lassa-Fever model equation 3, for the human 

population, the compartments   and  h hs r  represent the dis-

ease-free states and  and  h he i  denote the infection class. The 
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Lassa Fever-free equilibrium (LF-FE) point 

 0 , , , , ,h h h h r rs e i r s i   by first setting 0h h he i r    and 

1 0.h
h h h r h h

ds
s i s i ms r

dt
        

It follows that 
1

hs
m

  and for the rodents population, the 

compartments rs  is only the disease-free states and the 

compartments  ri  is the infection class, 0ri   then set

1 0r
r r r

ds
s i ns

dt
    , 

1
.rs

n
  Therefore, the Lassa Fe-

ver-free equilibrium (DFE) is 0

1 1
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To obtain the basic reproduction number, 0R  of the model 

equation (3) at 0 , the application of the next-generation 

matrix is employed [13]. As the infected compartments are 

,    and  h h re i i  then  and F V  formed the ongoing infection 

terms and the out sending terms shown below. 
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It follows that the measure of transmission potential of 

Lassa Fever, denoted by 0R , is obtained from the matrix 

1FV  by calculating it‟s spectral radius. 
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Theorem 2. When 0 1R  , the Lassa Fever-free equilib-

rium 0  of the dynamical Lassa Fever equation 3 is locally 

asymptotically stable. 

Proof 

Simplifying the Jacobian matrix of the Lassa Fever equa-

tions at the Lassa Fever -free equilibrium point, the result is 

given by 
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Where  

 2 0A m      and   B m m
m


        

If 0 1R  , then 0B   implies 6 0  . All eigenvalues 

will zeros or negatives, hence 0  is locally stable. If 0B   

implies 6 0   and 0  is locally unstable. 

3.1. Global Stability of Lassa Fever - Free 

Equilibrium 

The conditions for the global stability of the Lassa Fever 

model at 0  is obtained by applying the approach stated in 

[23, 24] which defines the human population hN  of the 

Lassa Fever model is defined by 

 

    00,,,

,





QGSQG
dt

dS

SQF
dt
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Where 
nRQ denotes the class of individuals free from 

Lassa Fever and 
mRS   denotes the infected individuals. 

From the above notation, the Lassa Fever-free equilibrium is 

written as  0,0 QG  . Then, these two conditions below 

clearly showed that the global stability of the Lassa Fever free 

equilibrium. 

 0,:1 QF
dt

dQ
p , 0Q  is globally asymptotically stable 

   ,,ˆ,:2 SQGBSSQGp   where   0,ˆ SQG  

for SQ,  

Lemma 1: The equilibrium point  0,0 QG  is globally 

asymptotically stable when 0 1R   and the above as-

sumptions on 1 2 and P P are true. 

Theorem 3: The Lassa Fever-free equilibrium point 0  of 

the Lassa Fever is globally asymptotically stable provided

0 1R  . 

Proof 

  













h

h

mr

rms
QF

1
0,

 

  













m

m
IJ QF

0
0,




 

Solving for the characteristic polynomial of ( ,0)F XJ ; we 

have  

( )( ) 0m m       

1 2 m     

Therefore, 0QQ  is globally asymptotically stable. 

Then, 

   ,,ˆ, SQGBSSQG 
 

We have 

 
 

  





















h

hh

i

e

m

sm
SQG




,

 

Therefore, it follows that B satisfies all conditions stated 

in 2P . 

3.2. Strategy for Prevention of Lassa Fever 

The Preventive measures as adopted by MEDECINS 

SANS FRONTIERES, DOCTORS WITHOUT BORDERS 

[15] to curtail the spread of Lassa fever will be categorized as 

follows: 

  Regular Hand Washing with soap and clean water and 

food Hygiene; wash vegetables and fruits before eating, 

properly cover food, Food should be properly cooked, store 

food in containers with lids or covers, kitchen utensils should 

be kept clean and covered, avoid hunting and eating of rats 

will be set to reduce the spread of Lassa fever in the human 

population. 
  Maintaining a clean Environment at home and the 

community: keep a cat around, close holes in the house, use of 

door and window will be set to reduce the breeding of rats in 

the environment. 
 : Treatment of individuals infected with Lassa Fever. 
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3.3. Lassa Fever Model Equations with Controls 

*

*

*

*

*

*

1 (1 )

(1 )

1 (1 )

(1 )

h
h h h r h h

h

h
h h h r h h

h

h
h h h h h

h

h
h h h h

h

r
r r r

h

r
r r r

h

ds
s i s i ms r

dt

de
s i s i e me

dt

di
e i i mi i

dt

dr
i r mr i

dt

ds
s i ns

dt

di
s i ni

dt

  

   

   

 

 

 


      




     


    


   




    



   


    (8) 

 
Figure 2. Model diagram with control. 

4. Optimal Control Problem 

The aim of the optimal control is to identify the control 

level which minimizes the number of exposed and infected 

classes. Therefore, we find the maximum value 
* * *,    and  w   of the controls ,      and      at time t  so 

that the trajectories which are combined to the states 
* * * * * *, , , ,   and  h h h h r rs e i r s i solve the above Lassa Fever model 

and      * * *. ,   .    and  .    minimizes the function de-

fined below: 

 2 2 2
1 2 3

, ,
0

min

ft

h h
w r

J e i A A A dt


            (9) 

Subject to model equation (8). 

Equation 9 above consist of the exposed and infected 

cases with the severity of the side effects, 
,     and    

, 

of the control measures. Here, we employed U 0 , 

U0 and ,0 U  where maxUU  . The 

conditions required for these optimal controls was ob-

tained by the application of Pontraygin‟s Maximum 

Principle (PMP) is employed [14]. The Lagrangian is 

defined as following: 

 2 2 2
1 2 3 1 2 3 4 5 6* * * * * *

 h h h h r r
h h

h h h h h h

ds de di dr ds di
L e i A A A

dt dt dt dt dt dt
                    

           11 1 12 1 21 2 22 2 31 3 32 3c b c a c b c a c b c a                  

Where 11 12 21 22 31 32,   ,   ,   ,   ,   0c c c c c c  are penalty mul-

tipliers, which satisfy 

    *
11 1 12 10,    0    at c b c a       

    *
21 2 22 20,    0   at  c b w c w a w     

    *
31 3 32 30,     0  at  .c b c a       

Theorem 4: Given optimal controls * * *,  ,     and solu-

tion * * * * * *, ,  ,  ,  ,  h h h h r rs e i r s i  of the corresponding state system 

8, there exist adjoint variables i where 1.2,...,6i   

   1 1 2 11 h ri i m             

 2 2 3 21 m           

      3 1 2 3 41 1 hs m                      

 

 4 4 1m       

  5 5 6 51 ri n           

    6 1 2 5 6 61h rs s n                

  0i ft  , transversality condition. 

The optimality condition is given by 

0.u

L L L
L

  

  
   
  

 

Moreso, the optimal controls are defined as follow:  
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 1 2*
1 1

1

min max , ,
2

h hs i
a b

A

  


     
    

    

 

* 5 4
2 2

2

min max , ,
2

ha i b
A

 


      
     

     

 

 5 6*
3 3

3

min max , ,
2

r rs i
a b

A

  


     
    

    

 

Proof 

The adjoint variables i  were solved in the system in the 

Lagrangian. 

1 2 3 4 5 6, ,  , ,  ,  .
h h h h r r

L L L L L L

s e i r s i
     

     
           

     
 

Thus,  

     1 1 2 1 1 f1 ;    t 0h ri i m               

   2 2 3 2 2 f1 ;   t 0m             

        3 1 2 3 4 3 f1 1 ;   t 0hs m                          

   4 4 1 4 f;   t 0m         

    5 5 6 5 5 f1 ;   t 0ri n             

      6 1 2 5 6 6 6 f1 ;   t 0h rs s n                  

The optimal controls * * *,  ,      were resolved from

0
L L L

  

  
  

  
, it follows that, 

 1 1 2 11 122 0h h

L
A s i c c   




      


 

 2 4 3 21 222 0h

L
A i c c  




      


 

 3 5 6 31 322 0r r

L
A s i c c   




      


 

Therefore, 

 1 2 11 12

12

h hs i c c

A

  


  
  

 4 3 21 22

22

hi c c

A

 


  
  

 5 6 31 32

32

r rs i c c

A

 


  
  

There are 3-cases for the optimal controls * * *,  ,      

respectively at time t . 

Case I: *
1 1 11  and  ,  c 0.a b     

 1 2 11 12
1

1

 
2

h hs i c c
a

A

  


  
   

 1 1 1 2 122 0h hA a s i c       

 1 2
1

12

h hs i
a

A

  
  

Case II: *
1 1a b  , 11 12 0c c   

 1 2*

12

h hs i

A

  



  

Case III: *
1b  , since *

1 12,   0a c   

 1 2 11 12*
1

12

h hs i c c
b

A

  


  
   

 1 1 1 2 112 0h hA b s i c        

 1 2
1

12

h hs i
b

A

  
  
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 

*

*

*

1 1

1 2*
1

1

1 1

                        if  

     if  
2

                         if  

h h

a L a

s i
L a

A

b L a







  






 

 


 

Following a similar argument for * * and w  , it follows 

that 

 

*

*

*

2 2

4 3*
2

2

2 2

                   if  

     if  
2

                    if  

h

a L a

i
L a

A

b L a







 






 

 


 

 

*

*

*

3 3

5 6*
3

3

3 3

                        if  

     if  
2

                         if  

r r

a L a

s i
L a

A

b L a







  






 

 


 

Therefore, it is summarized as follow in compact form. 

 1 2*
1 1

1

min max , ,
2

h hs i
a b

A

  


     
    

    

 

* 4 3
2 2

2

min max , ,
2

hw a i b
A

       
     

     

 

 5 6*
3 3

3

min max , ,
2

r rs i
a b

A

  


     
    

    

 

Table 2. Parameters Values. 

Parameters Range Reference Scale Parameters Values 

H  1000*0.0003465 [17]   0.069-0.101 

R  0.05 [20]   0.063-0.12 

1  0.022-0.27 [17] m  0.001 

2  0.024-0.048 [17]  0.4329 

3  0.333 Assumed   0.961 

4  0.333-0.8 [19]   0.0095 

5  0.00385 [19]   0.00056 

  0.00019231 [18] n  0.12821 

H  0.0003465 [18]   

R  0.00641026 [19]   

 

5. Numerical Simulations 

The numerical simulation of the model is performed in 

other to examine the sequel of Lassa Fever parameters in the 

growth of the virus. The numerical values in Table 2 and the 

previous states  _ 0 0.82,s h   _ 0 0.08,e h 

 _ 0 0.06,  c h   _ 0 0.04,r h   _ 0 0.838,  s r  and 

 _ 0 0.16c r   were used. The graph below shows the 

Model simulation for some period of time. A numerical ap-

proach known as the Forward-Backward Sweep method was 

used to enable numerical modeling of the state and adjoint 

equations, and MATLAB script was to iteratively update the 

control by implementing the fourth-order Runge-Kutta 

method. This state is repeated until successive iterations are 

sufficiently close to each other [21, 22]. In this paper, the 

proposed control measures for three numerical modeling 

strategies of Lassa Fever model are summarized as follow: 
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(i) Strategy A: 1 2 3 0u u u    

(ii) Strategy B: 1 2 30.2,   0.3,  0.2u u u    

(iii) Strategy C: 1 2 30.5,   0.65,   0.45u u u    

Where 1 2 3,   ,   u u u      

 
Figure 3. Model Simulation for Strategy A. 

 
Figure 4. Model Simulation for Strategy B. 
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Figure 5. Model Simulation for Strategy C. 

 
Figure 6. The value of the objective function at a given maximum control level. 

Figures 3-5 above shows at a strategic level the effective-

ness of the control measures in terms of the number of sus-

ceptible human, exposed human, infected human, recovered 

human, susceptible rodent and infected rodents populations. 

T denote the objective function trajectory when 

1max 2max 3max0.5,   0.65  and  0.45u u u    respectively. 
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6. Conclusion 

This work conducts a theoretical study on the control of 

model of Lassa Fever dynamics in Ebonyi State, Nigeria. The 

infection free equilibrium solution appears to be both locally 

and globally stable. The introduction of favourable conditions 

will lead to the suppression of the Lassa Fever and reduce the 

prevalence of Lassa Feever in Nigeria if the proposed controls 

are implemented. Model simulation show that the level of 

control increases, the number infected individuals decreases 

and the population of the recovered individuals increases. It 

soon became clear that there was a significant increase from 

strategy A to strategy C. Therefore, the percentage of indi-

viduals complying with the degree and level of care recovered 

in this task should be interpreted and used with caution. In any 

case, since multiple routes of infection are likely to exist, 

intervention strategies must become more context-specific. A 

more holistic approach to rodent control is needed, using 

effective and targeted control methods while maintaining a 

clean environment in homes and communities as adopted in 

this paper. To reduce secondary transmission of Lassa fever, 

additional education on personal hygiene and access to health 

facilities during illness is needed. 
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