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Abstract 

In fracture and damage mechanics, modeling of crack propagation has always been a source of difficulties. Numerous works 

have been carried out on this case at the crack tip, introducing new parameters: the Stress Intensity Factor (K); which is the 

local Irwin parameter, and also the Rice integral (J), the Griffith's energizing method, in which J and G are the global 

parameters around the crack tip. The problem of the crack remains very complex and difficult problem to be solved. Several 

methods are used to investigate the crack problem, namely the method of gradient, the numerical methods by finite elements, as 

well as the thermodynamic approach and the classical methods of Irwin, Griffith or Rice, according to the Intensity Stress Factor. 

This study adds to the work already carried out. Using the analytical analysis method of equations, we manage to show that the 

Stress Intensity Factor has a matrix of rank 3 at the crack tip, which is a better form since it includes complex combination cases 

of crack mode and bifurcation. Furthermore, when the material is subjected to complex stress, after analysis we emerge from a 

new singularity in (r) which is different from the classical mode. Finally, we are shown the new form of singularity, which is 

frequency dependent. This work can explain many situations, for example, the case of certain structural disasters showing the 

presence of cracks for complex or uncontrollable stress. 

Keywords 

Crack, Matrix, Factor of Constraint Intensity (FIC), Frequency, Singularity 

 

 

http://www.sciencepg.com/journal/ajam
http://www.sciencepg.com/journal/148/archive/1481203
http://www.sciencepg.com/


American Journal of Applied Mathematics http://www.sciencepg.com/journal/ajam 

 

51 

1. Introduction 

Since Irwin, [1, 10] some works have focused on the dy-

namic crack, highlighting the singularity of the stress intensity 

factor (FIK), at the crack tip. Considering the three elemen-

tary crack modes [1]: mode I, mode II and mode III, which 

respectively associated the FIK: KI, KII and KIII. The reso-

lution of the problem being complex, several methods have 

been found in addition to the classical methods of Irwin, Rice 

or Griffith. Among these methods we can cite: numerical 

methods by finite elements see [12], gradient models [3], as 

well as the thermodynamic approach [10], the advantage of 

modeling a crack by a notch [5], and the experimental method 

[7], to close this literature we can mention works on the 

propagation of the crack with a law of Paris improven [6]. 
This difficulty is due to the presence of crack which 

transforms the domain around the crack into a plastic domain, 

which is governed by nonlinear equations. 

The main objective of the present work is the investigation 

of complexity propagation of crack in a ductile material under 

complex solicitation in crack tip. On the contrary to other 

works on the calculation of the FIC in separate mode by finite 

elements [8], or in dynamics [2, 3, 11], which doesn’t explic-

itly show the combination of the crack mode in complex cases, 

our work goes beyond by since in the case of a complex stress, 

leading to bifurcations, we introduce for the analytical analy-

sis method, the notion of intensity factor matrix of stresses at 

the bottom of the crack, which for our knowledge is new. In 

addition we highlight the new singularity and the influence of 

frequencies on the singularity parameter. This work is a 

continuation of the work carried out in previous articles [13], 

which shows the new form of singularity at the crack tip. 

2. Problem Formulations 

2.1. Model Description 

Let us consider a material with the initial mode I crack, 

submitted to a vibrating force (Fi), applied on the boundary 

surface (∂Ω
d
) and the volume (Ω), (see Figure 1). 

 
Figure 1. Material with a crack under complex solicitation in which U is the displacement, N is the component of Fi in the ith direction,    and 

   are lips of the crack. 

The general equation governing this domain is given by the 

following relation 

(   )              
   

   
         (1) 

By using the Clebsch theorem, the displacement vector U 

as well as all field of vector can be rewritten as 

                       (2) 

in which the U₁ is the derivative of a potential scalar and U₂ a 

potential vector. U is class C², which leads after the trans-

formation to: 

                                (3) 

while taking into account Eq. (2) into Eq. (1), one has: 

(   )           (   )                

     
  (     )

   
              (4) 

which accounting to Eq. (3),                   and 

  ₂           ₂, leads to 

(   )          
  (     )

   
          (5) 
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2.2. Model Equation in Curvilinear Coordinates 

Take into account the influence of the benchmark linked 

to the evolutionary trajectory of the crack, we make in the 

vicinity of the crack tip, the following changes of variable: 

                               (6) 

where (x0, y0, z0) are the Cartesian coordinates of the tip in the 

reference mark., (x, y, z) are the coordinates of the point 

located in bottom of crack or to the neighborhood of the crack 

tip so that, in the reference mark bound to the crack which can 

be expressed in spherical coordinated as: 

                                         (7) 

leading the derivation operator to [10] 

 (     ) 

[
 
 
 
 
  

   
    

  

    
   

   

   

  

   
    

  

    
   

   

   

  

   
    

  

    
   

   

   ]
 
 
 
 

         (8) 

with      
    

    
  since one knows that the trajectory 

(ℓ) is function of (x₀, y₀, z₀) by the slant of the applied con-

straint (σ
app

) in the crack tip. We obtain the new form of 

partial derivative: 

 (     ) (
  

   
 

  

   
 

  

   

⏞        
 (     )

,    
  

   
  .  

  

    
   

  

    
 

  
  

    
/                   (9) 

Considering elementary displacements dr, rdθ, rsinθdφ, the 

Laplacian  (x,y,z) becomes in spherical coordinates: 

 (     )  (     )    
  

   
  .  

  

    
   

  

     
 

  
  

         
/            (10) 

leading to 

 (     )  (     )  ̃(      )          (11) 

Where  ̃(      )  represents the "singular" Laplacian be-

cause it depends on the evolution of the crack tip, so that 

 ̃(      )    
  

   
  .  

  

    
   

  

     
   

  

         
/ (12) 

While applying this change of variable and reference mark 

to the resolution of the equation (5), we obtain in the spherical 

coordinates (      ₁  
 

 
      ₂  

 

 
) 

 (     )      
  (     )     ̃(      )      

  ̃(      )   

  
    

   
           (13) 

which is the general equation of propagation associated to the 

stationary reference mark, therefore the solution is a super-

position of regular solutions U
r
 and singular solution U

ε
. To 

find U
ε
, we consider the neighborhood domain of the crack tip 

who bound to the dynamic reference mark were origin is crack 

tip. The regulars terms bound to the stationary reference mark 

and out of the singular zone are both equal zero, leading Eq. 

(13) to 

 ̃(      )      
  ̃(      )     

    

   
       (14) 

This equation is the vibration equation and the propagation 

of the crack tip in the singular domain bound to the presence 

of the crack by the variable ℓ (length of the crack). 

3. Structure of Solution 

3.1. Preliminary 

To determine the solution in the domain of crack or sin-

gularity zone who is characterized by the presence of the 

crack in this volume    and the rayon r limited by Γ. We 

introduce the criteria of bifurcation by the matrix [K] (Matrix 

of the Factor of constraint intensity defined as. 

, -  (
 ₁₁  ₁₂  ₁₃
 ₂₁  ₂₂  ₂₃
 ₃₁  ₃₂  ₃₃

+             (15) 

which is the matrix of the FIC in the crack tip. Remembering 

the D. Leguillon and E. Sanchez-Palencia [13] works, we 

deduct the form of the solution   
  in the crack zone as: 

  
  , -∑       ( )  (     )       (16) 

in which λ is the degree of the singularity and   the effectif 

displacement in the crack tip. The component of matrix [K] is 

noted by [   ]  ,  ( )-(  ) , were (KJ) is the factor of 

constraint intensity. While replacing [K] by his expression in 

(16): 

  
  ,  ( )-(  ) ∑       ( )  (     )        (17) 

  ( ) is the applied strength compatible with the mode of 

crack. Considering the principle of separation of Fourier 

variables, we obtain 

  
  ,  ( )-(  ) ∑   ( )    ( )  ( )  ( )        (18) 

Let , -  ,  ( )-(  ) ∑   ( )   Eq. (18) become 



American Journal of Applied Mathematics http://www.sciencepg.com/journal/ajam 

 

53 

  
  , -  

 ( )  ( )  ( )               (19) 

  
          , -  

 ( )   (   )          (20) 

So that     , -   
 ( )   ( )   ( ) 

             

, -   
 ( )   ( )   ( ) 

     

We consider (14) with the operator  ̃(      ), the singular 

solution applied to the displacement is given by (18). 

3.2. The Boundary Conditions on Side 

    on    ∑₁  ∑₂  and for      We have 

      on (   is the regular displacement), on the ∂Ω
d 

       at t=o we suppose       either t = tk and ω ≠ 0 

we have F(tk) = 0. In 3D the function R(r) is the form r
λ
 with λ > 

-(1/2).
 

3.3. Quasi-Static Approach 

To solve (14), we are make the hypothesis of small per-

turbation (HPP) and consider the harmonic motion with the 

limit condition by 
  

   
        , who drive us, in the spher-

ical coordinates, when we introduce (18) in (14), we obtain 

the system of differential equation. For the resolution, let’s 

apply the hypothesis of a harmonic movement with the limits 

condition. What drives us to (14). Let’s introduce (18) in (14), 

this transformation gives the system of differential: 

{
 
 

 
 

 ̈    
       

 ̈     
     

 ̈       ̇
 

 
      (      

      )    

   ̈     ̇  (     
 

    
 )    

   (21) 

3.4. Discussion and Remarks 

The system of equations (21) translates through the two last 

lines the presence of the singularity and the weakly (amortize) 

at the crack tip by the terms: (        ), (
 

 
sin2θ, 2r) and 

      
        

    
 

    
  respectively of Θ(θ) and Φ(φ). 

It can’t be assimilated to terms of intertie’s, amortizations and 

stiffness. The condition of the weakly (amortize) imposes the 

relations: (
 

 
sin2θ < 2     , 

 

 
sin2θ < 2(      

      ), and 

(2r <    , 2r < (    
     ) where 

{
    

                
   {

       

                      
                       (22) 

Then, from inequality (22) we obtain   -   ₀, - ₁   ,, 

   
  √        

   
        

  √        

   
 and  ₀  

-
     

 
   ,the system is not harmonic and the crack is static. 

  - ₀  ₁,, the system is harmonic. 

Finally the analysis of Eq. (22) shows that   -
 

 
 
  

 
, for 

the non-harmonic case, and   -
 

 
 
  

 
,  for the harmonic 

case. 

4. Analytical Solutions 

4.1. Case of the First Line of Eq. (21) 

The form of its solution is   ( )        
( )   ,     

      
( )- , with    

    
    and       

( )  the phase 

difference between the excitation and the answer of the ma-

terial. After application of the boundary condition, we obtain 

(    (    )  ) 

   ( )         ( )   ,(    )  -     
(    )  

𝑎 
                      (23) 

and 

  
  , - ∑     ( )

  
       ( )    ( )   ,(    )   -                      (24) 

4.2. Case of the Second Line of Eq. (21) 

The solution is 

           (√    (   ) )         ( √    (   ) )               (25) 

Where 

           .(√   (   )) /         .(√   (   )) /                   (26) 



American Journal of Applied Mathematics http://www.sciencepg.com/journal/ajam 

 

54 

 

corresponding respectively to λ₂α(n,ω) < 0 and to λ₂α(n,ω) > 0, 

wiht ϕ₂α(n,ω) = 0 if to λ₂α(n,ω) = 0. 

4.3. Case of the Last Line of Eq. (21) 

The form of solution this equation is given by the method of 

series by 

   ( )      ∑     
( )

    
          (27) 

the determinant equation of the last line of Eq. (21) is 

            , the solution of is 

     
   √      (   )

 
          

   √      (   )

 
   (28) 

Where |       |  √   with          (   )  or 

       
    , where     is the module of   , and     the 

argument of    (i
2
 = -1). 

    
( )

 
 (    )   (   ) 

𝑎0(      )
 
 (      )    1

       (29) 

the recurrent relation between      and   (   ) , with 

(        )    (        )      (   )     , m ≥ 2 

        *   +  for j = 1 we have P1nα, for j = 2 we have P2nα. 

4.4. Analysis and Interpretation 

For √      

  
     it exists λ1n so that √       =   

  where 

    
  

    

 
, the solution is 

   𝑎(           )  {
    (        ( )          ( ))

 
  (        ( )          ( ))

                  (30) 

where B1nα and B2nα are the constants. 

    ( )  

{
 
 

 
 * 

  

 
 
√   

 
   

   
 ∑     

( )     
   +  

 

   (
√   

 
.   .

   

 
//   ( ))      (

√   

 
.   .

   

 
//   ( ))  

                   (31) 

    ( )  

{
 
 

 
 * 

  

 
 
√   

 
   

   
 ∑     

( )     
   +  

 

   (
√   

 
.   .

   

 
//   ( ))      (

√   

 
.   .

   

 
//   ( ))  

                (32) 

For √    , one has: √          leading to     
  

   

 
, (kn ∈ N) where 

    (           )          ( )          ( )              (33) 

B3nα,, B4nα are the constants. 

    ( )   
     

 ∑     
( )      

   
                              (34) 

    ( )      
  
   

   ( ) ∑     
( )      

  
   

  ∑     
( )     

      
   

             (35) 

where 

  
  , - {

∑     𝑎   𝑎( ), 𝑎(           )   𝑎( )   𝑎( )-   ,(    )   -    

 
∑           ( ),  (           )    ( )    ( )-   ,(    )   -    

             (36) 
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which is the general solution. 

According to [13] for the 3D case, the particularity of the 

characteristic of exposing of singularity on the crack tip is 

strictly greater than -1/2. While applying this condition to our 

results one has: 
  

 
 

√   

 
   

   

 
 

  

 
 and 

      

 
 

  

 
 or 

 √      
   

 
   and       , finally one has       

  . 

By identification, we have the convergence condition of the 

solution ∑     
( )        

    and     
  

 
. where 

   √      

 
 

  

 
 soit    (   )  

  

 
. The condition 3D 

impose Pj = P1nα and B2nα = B4nα = 0, (31) and (34) becomes 

    (           )     (  𝑎      ( )       ( )) 

    (           )          ( ) 

    (           )          ( ) 

      (37) 

and 

    ( )  
  
  

√   
    

   
 ∑     

( )
      (

√   
 

   .
   
 

/)  ( )   
   

    ( )  
      

 ∑     
( )

     
    

 (38) 

Finally, the solution must be written 

  
  , - {

∑      𝑎   𝑎( ),   𝑎( )   𝑎( )   𝑎( )-   ,(    )  -    

 
∑            ( ),    ( )    ( )    ( )-   ,(    )  -    

               (39) 

This approach show the displacements are generally sin-

gular in  
      

  and  
  

 
 
√   

 
   

   
 . 

The modes      and n ≠ k, (is the number of mode n 

who Fi (tk) = 0, and    
 

   
(    ) , we have     

(    )  , (    is the real value of pulsation). Considering 

the relation between     and   . 

Firstly, when n > n0     2 [0, 1] and n   n0      2 [0, 

1] with n0 = E(
   

 
) -1, (E(X) = is the integer part of X), we 

obtain the graph who confirm this situation: 

Figure 2 confirms the situation in the singular domain, 

when (n) increases the frequency supply towards zero, con-

firming that we are the restriction domain. 

We noticed that, when n grow up, the frequencies    de-

creases and offering toward zero. For n offering toward zero 

we have    who increase. Secondly, we are fixed n≠0, when 

(n,    ) → + , and       , the crack under solicitation 

max, we have the propagation of the crack. 

 
Figure 2. Graph of    function according to n for different values of   . 
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Figure 3. Graph of    function of    . n represent the mode of vibration or frequencies. 

    is the eigenfrequencies. 

To warn the reduction of the propagation crack is better to 

choose one material who     is big. Besides, this graph 

(Figure 3) shows that the Eigen-frequency of the material 

change, confirming the influence of damages on a character-

istics of the material [11, 13]. 

5. Singularity Equation of Frequencies 

5.1. Resolution for (14) 

In the crack tip, the form of displacements is 

  , -        (   )          
 

 
            (40) 

Considering the equation (21) and the separating of the 

solution  (   )   ( ) ( ), applying (14), one has 

   

   
    , -        ( ) ( )          (41) 

and 

 (     )  , -    {
 ̈   

 

 
 ̇   

 

       
 ̈   

 
 

   ̈   
 

   𝑎   
 ̇ ̇  

  (42) 

Considering the domain around the crack tip or the singular 

domain we have: 

 ̃(      ) * 
 
  , -

     (  
  , -

    
   

  , -

     
   

  , -

         
*+                            (43) 

and (21) become 

      0.
 ̈

 
/  

 

 
.
 ̇

 
/  

 

       
.
 ̈

 
/  .

 

 

 ̈

 
 

 

   𝑎  

 ̇

 
/1                         (44) 

Knowing that  ( )       ̇( )     
      ̈( )  

  (    )     , either 

 ̈

 
   (    )    

 ̇

 
    

   
 ̈

 
         (45) 

Concerning  ̈       ̇
 

 
      (      

      )  

 , to multiply by 
 

        
 we obtain 

 

  

 ̈

 
 

 

   𝑎  

 ̇

 
  

 

       
(      

      )   (46) 

Introduce (45), (46) in (44), we obtain the equation of the 

singularity of the frequencies 

  
  

𝑎 

  0
            

     
   (    )      

   

     
1   (47) 

   
𝑎

 
√      (    )     

  
    

 
      (48) 

(kn′   N*). The frequencies are function of the degree of 

singularity in crack tip and the domain of fissuration by the 

parameter r. For λn(λn+1) = 0 (λn =0 or λn = -1), (53) becomes 

of frequency equation of non-evolution of crack    
𝑎

 
 √   . 

5.2. Interpretation 

The dispersion relations (47) and (48) confirm the nonlin-

earity and disruptions at the level of frequencies to the 

neighborhood of the crack tip. 

Figure 4 represents the graph of   ( ) with the parameter 

(a) function a variable (a) for the different values of (  ( )  
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 √      ( )  

 

 
 √      ( )  

  

 
 √      ( )  

  

 
 √      ( )  

  

 
 √   )  It gives us a good interpretation 

for the evolution of frequencies: This graph shows that when r 

is big the frequency decreases explaining the fact that one is 

far from of the crack tip, on the other hand, when one comes 

closer of the crack tip (   ), we are the plastic domain and 

greatly nonlinear equation (21). In neighbor domain (   ), 

the presence of crack leads to strongly increasing of the fre-

quency. 

 
Figure 4. The graph of evolution the       ( ) according to the n. 

The different curves show that, for every value of the fre-

quency, when r increases, far from crack    offers toward 

zero: we are the linear domain. 

6. Conclusion 

Through this survey we putted in light three aspects: the 

first aspect concerning the FIK that can get therefore under 

matrix of rank 3, the eigenvalues of this matrix are the clas-

sical mode KI, KII and KIII; secondly, the appearing of new 

forms of singularity in the crack tip: third, the influence of 

frequencies on the singularity therefore on the propagation of 

the crack. The present work reveals that a vibratory loading of 

a material with an initial mode I of crack leads to the ap-

pearance of non classical singular modes of the type 

      (        ), around the crack tip. These modes, in 

combination with those classically encountered in work on the 

calculation of the displacement field in materials exhibiting a 

crack, can produce a change in crack path as well as mode 

bifurcations and branching effects at the crack tip origin. The 

damage of the material is then more pronounced and happens 

more quickly than it does in absence of the vibratory loading. 

In addition, the way to perform the inner and the outer as-

ymptotic expansions around the crack tips undergoes a sub-

stantial changing in some way due to by the complexity of the 

radial functions    𝑎(           ) and     (           ). 

For knα = 0 we obtain the classical case who the displacements 

are singular in  
  

 . Beside for knα ≠ 0, the displacements are 

singular in  
      

 , we have the small perturbation and the 

strong perturbation for the singularity of  
  

 
 
√   

 
   

   
 . 
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