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Abstract: A new development of Finite Volumes (FV, for short) and its theoretical analysis are the purpose of this work.
Recall that FV are known as powerful tools to address equations of conservation laws (mass, energy, momentum,...). Over the
last two decades investigators have succeeded in putting in place a mathematical framework for the theoretical analysis of FV.
A perfect illustration of this progress is the design and mathematical analysis of Discrete Duality Finite Volumes (DDFV, for
short). We propose now a new class of DDFV for 2nd order elliptic equations involving discontinuous diffusion coefficients
or nonlinearities. A one-dimensional linear elliptic equation is addressed here for illustrating the ideas behind our numerical
strategy. The algebraic structure of the discrete system we have got is different from that of standard DDFV. The main novelty
is that the so-called diamond mesh elements are confined in homogeneous zones for flow problems governed by piecewise
constant coefficients. This is got from our judicious definition of the primal mesh. The gain is that there is no need to compute
homogenized coefficients to be allocated to the so-called diamond cells as required to conventional DDFV. Notice that poor
homogenized permeability allocated to diamond elements leads to poor approximations of fluxes across grid-block interfaces.
Moreover for 1-D flow problems in a porous medium involving permeability discontinuities (piecewise constant permeability
for instance) the proposed FV scheme leads to a symmetric positive-definite discrete system that meets the discrete maximum
principle; we have shown its second order convergence under relevant assumptions.

Keywords: Diffusion-reaction Problems, New Finite Volume Scheme, Diffusion Coefficient Discontinuities,
Second Order Convergence

1. Introduction

Let Ω =]a; b[ be an interval from the set of real numbers R,
where a, b ∈ R with a < b are given. Also given as data are
real-valued functions λ, f and µ.

We are interested in investigating a new Finite Volume
approximation of the solution u to the following diffusion-
reaction problem:

Find u in an adequate function space such that:

− [λ(x)u′(x)]
′

+ µ(x)u(x) = f(x) in Ω (1)
u(a) = u(b) = 0. (2)

It is well known that, in the context of discontinuous
diffusion coefficients, the conventional Finite Volume solution
to the preceding problem, without reaction term (i.e. with
µ = 0), displays only a first order convergence in L2-norm,
L∞-norm and in some discrete energy norm (see Chapter 1
from the work of R. Eymard et al. which is considered
as one of the most important references on this subject.
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[21]). In the previous reference (see again Chapter 1) it is
indicated that however second order convergence is achieved
if the exact solution to (1)-(2), without reaction term, is
a C4-function, assuming a constant diffusion coefficient λ
and a uniform mesh size on Ω. Higher space dimension
problems of the type (1)-(2) are considered in the literature
(see for instance the following references and references
therein. [21 − 23]). Most numerical methods in general and
conventional finite volumes in particular give only a first order
convergence. However assuming that the diffusion matrix lies
in W 1,∞(Ω) in two research articles signed by Franco Brezzi
and some of his colleagues a second order convergence has
been got for a mimetic finite difference solution. [22, 24].
Similar results have been got by other investigators with
conventional cell-centered finite volumes for the Laplace
operator in rectangular domains. [21]. Let us mention an
interesting result due to Pascal Omnes who has obtained a

second-order convergence for a function reconstructed from
a Finite Volume approximation of the 2D-Laplace operator on
Delaunay-Voronoi meshes.[18].

Developing a new Finite Volume scheme based upon a 2nd
order convergence technique on non-uniform meshes is our
aim in this work. We will be addressing one dimensional flow
problems of the type (1)-(2) in the context of discontinuous
diffusion coefficients. We will proceed in such a way that
the discrete problem involves discrete unknowns located at
cell points and at vertex points of a primary coarse mesh.
These points being cell centers of a finer mesh associated
with the primary mesh. For obtaining the discrete equations,
the numerical technique used is not that of the conventional
Discrete Duality Finite Volumes as we will see later.

Main assumptions on the data:
1. On one hand the function λ is supposed to meet the

following assumptions:


◦ λ(x) =

∑S
s=1 λs1Os(x) a.e. in Ω

◦ ∃λ−, λ+ ∈ R∗+ such that λ− ≤ λ(x) ≤ λ+ a.e. in Ω,

(3)

where R∗+ stands for the subset of R made up of non-negative real numbers and where {Os} is a partition of Ω made up of
non-empty open subintervals of Ω, while {1Os

} is a family of functions defined almost everywhere (a.e. for short) in Ω as:

1Os
(x) =

1 if x ∈ Int(Os) = Os

0 if x ∈ Ext(Os)
(4)

where Int(�) and Ext(�) are respectively the interior and the exterior of a subinterval � of R.
2. On the other hand the functions f and µ are supposed to satisfy the following assumptions:

◦ f ∈ L2(Ω)

◦ µ ∈ L∞(Ω), with µ(x) ≥ 0 a.e. in Ω.

(5)

Based on the previous assumptions, the Lax-Milgram theorem (see for instance the well known book of H. Brezis, precisely
the Corollary 5.8 at the page 140 of that book. 5.) applies and ensures existence and uniqueness of a weak solution to the problem
(1)-(2), that is, There exists a unique function u ∈ H1

0 (Ω) such that:∫
Ω
λu′v′dx +

∫
Ω
µuvdx =

∫
Ω
fvdx ∀ v ∈ H1

0 (Ω)
(6)

where the derivatives u′ and v′ are understood in the sense of distributions and where H1
0 (Ω) is a well-known Sobolev space

defined as
H1

0 (Ω) = {v ∈ L2(Ω); v′ ∈ L2(Ω), v(a) = v(b) = 0}. (7)

The space H1
0 (Ω) is endowed with its standard norm defined as

‖ v ‖H1
0

= ‖ v′ ‖L2(Ω) ∀ v ∈ H1
0 (Ω). (8)

Since Ω is a bounded interval the previous norm is equivalent to the following one (direct consequence of Poincaré-Friedrichs
inequality that we recall at the end of the current subsection):

‖ v ‖= [‖ v ‖2L2(Ω) + ‖ v′ ‖2L2(Ω)]
1
2 ∀ v ∈ H1

0 (Ω). (9)
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This last norm is in fact the standard norm of the well known
Sobolev space H1(Ω) we recall here:

H1(Ω) = {v ∈ L2(Ω); v′ ∈ L2(Ω)}. (10)

It is then obvious that H1
0 (Ω) is a (closed) subspace of the

space H1(Ω). From now The standard norm of H1(Ω) is
denoted by ‖ . ‖H1(Ω) or simply ‖ . ‖H1 if there is no risk of
confusion. Notice finally that the previous weak formulation is
the starting point for the finite element analysis of (1), (2). See
for instance the following well known books by S.C. Brenner
and L.R. Scott on one hand and P.G. Ciarlet on the other hand.
[3, 20].

It is worth mentioning that the weak solution to the system
(1)-(2) satisfies the following stability inequality:

‖ u ‖H1
0 (Ω)≤ C ‖ f ‖L2(Ω) (11)

with C being a nonnegative real number. Let us end this
subsection with the following important result.[5].

Proposition 1.1. (Poincaré-Friedrichs inequality)
Let d be a given space dimension and D a nonempty open
domain of Rd. If D is bounded in one direction at least then :

∀ v ∈ H1
0 (D) ‖ v ‖L2(D)≤ C ‖ grad v ‖L2(Ω) (12)

where C is a nonnegative real number not depending on v and
grad v the gradient of v.

Notice that in the one-dimensional space context the
condition that ”D is bounded ” is essential for the previous
theorem. By contrast in higher dimension spaces (2D, 3D, ...)
it is only required that Ω should be bounded in one direction
(at least).

2. System of Meshes for the New Finite
Volume Scheme and Related Discrete
Function Spaces

The new finite volume method developed in this work is
based on the concept of primary relatively “coarse” mesh
associated with a control-volume mesh (to be extensively
defined later).

2.1. The System of Meshes Required for the New Finite
Volume Scheme

The novel finite volume technique we are going to expose
below requires a system made up of two classes of meshes
described as it follows.

1. Primary relatively coarse mesh
The primary mesh is the first mesh we define over Ω and

any mesh refinement initiative is operated exclusively from
that mesh, not anywhere else. Its main role is to give a
precise delimitation of the different homogeneous subdomains
of Ω in the context of piecewise constant diffusion coefficient.
This assumption on the diffusion coefficient is very realistic
for many complex engineering problems as subsurface multi-
phase flow problems very studied by Petroleum Engineers:
To learn more on this topic see for instance the following
references and the ones therein. [1, 2, 19].

Let N ∈ N be given, where N is the set of positive integer,

and let
{
xi+ 1

2

}N
i=0

be an increasing sequence made up of

points from Ω = [a; b], i.e.

a = x 1
2
< x 3

2
< · · · < xi+ 1

2
< · · · < xN− 1

2
< xN+ 1

2
= b. (13)

Let us set what follows:

Ωi
def
=
[
xi− 1

2
;xi+ 1

2

]
∀ i = 1, · · · , N (14)

xi
def
=

xi− 1
2

+ xi+ 1
2

2
∀ i = 1, · · · , N (15)

hi
def
= mes(Ωi) ∀ i = 0, · · · , N + 1 (16)

where mes(.) stands for Lebesgue measure in the space of one dimension, with the following conventions:

h0 = hN+1 = 0 (17)

dictated by the fact that

Ω0
def
= {x0}, ΩN+1

def
= {xN+1} (18)

where we have set:
x0 = x 1

2
= a and xN+1 = xN+ 1

2
= b. (19)

Definition 2.1. (Primary mesh)
The family

(
{Ωi}Ni=1 ; {xi}Ni=1

)
defines a primary mesh over Ω. The mesh elements Ωi, i = 1, · · · , N , are called primary

mesh elements in what follows.
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Figure 1. Primary mesh elements in black color, control-volumes in blue and red colors.

We introduce a parameter h defined by h
def
= max hi

1≤i≤N
with the assumption that there exists a mesh independent
nonnegative constant ρ such that

h

hi
≤ ρ ∀1 ≤ i ≤ N. (20)

As usually this parameter is called the mesh size in what
follows and is assigned to tend to zero.

Important Assumption: All the discontinuity points of the
diffusion coefficient λ are part of the boundaries of mesh
elements Ωi]

N
i=1.

2. Computation mesh or Control-volume mesh
For computational purposes the primary mesh is associated

with a finer mesh made up of two sub-families of control-
volumes as indicated in Figure 1 above and in the following
definition.

Definition 2.2. (Control-volumes)
a. The first sub-family of control-volumes is made up of :

Ki =

[
xi −

hi
4

; xi +
hi
4

]
i = 1, · · · , N (21)

with cell centers xi, for all i = 1, ..., N.
b. The second sub-family of control-volumes is made up of :

Ki+ 1
2

=

[
xi+ 1

2
− hi

4
; xi+ 1

2
+
hi+1

4

]
i = 0, · · · , N (22)

with cell ”centers” xi+ 1
2

, for all i = 0, ..., N and accounting
with the conventions (17).

Note that the points xi+ 1
2

, for i ∈ {0, ..., N}, are not
necessarily the midpoints of intervals Ki+ 1

2
for i ∈ {0, ..., N}

(see also Figure 1).

Definition 2.3. (Computation meshes)

The sub-families
(
{Ki}Ni=1 , {xi}

N
i=1

)
and

({
Ki+ 1

2

}N
i=0

,{
xi+ 1

2

}N
i=0

)
define a computation mesh over Ω, simply

denoted by M .

The points {xi}Ni=1 and
{
xi+ 1

2

}N
i=0

are the places where

are located the discrete unknowns {u(xi) ≡ ui}Ni=1

and {u(xi+ 1
2
) ≡ ui+ 1

2
}N−1
i=1 . The new method of

finite volumes we expose below indicates a way to get
second order approximations of these discrete unknowns for
diffusion-reaction operators involving discontinuous diffusion
coefficients. The finite volume solution to (1-2) will be
denoted by ({ui}Ni=1 , {ui+ 1

2
}N−1
i=1 ).

2.2. Main Theoretical Tools

We present here some important theoretical tools for a
finite volume analysis of the system (1-2). Among them
are discrete function spaces, discrete gradient, adequate inner
products and associated discrete norms, a discrete version
of Poincaré-Friedrichs inequality, projection and interpolation
operators. Such tools were introduced around 2005 by Pascal
Omnes’s team for numerical analysis of the conventional
Discrete Duality Finite Volume method discovered earlier
(around 2000) by Hermeline and Njifenjou - Moukouop. [8-
10]

2.2.1. Fundamental Discrete Function Spaces and Their
Properties

Let us start with introducing a basic function space denoted
by SM,0 (called ”discrete function space” because of that it
depends on the computation mesh M) and defined by:

SM,0 def
=

{
vh 6 vh(x) =

N

Σ
i=1

vi1Ki
(x)+

N

Σ
j=0

vj+ 1
2
1K

j+1
2

(x)

a.e in Ω with vi, vj+ 1
2
∈ R ∀i = 1, · · · , N ;∀j = 0, · · · ;N

}
(23)
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where we have set, for any subinterval T of Ω and for almost
every x ∈ Ω:

1T (x) =

1 if x ∈ Int(T )

0 if x ∈ Ext(T )
(24)

where Int(�) and Ext(�) respectively stand for interior and
exterior of � with respect to the standard topology of R. Let us
mention the following obvious result.

Proposition 2.1. The family of functions
(
{1Ki}

N
i=1 ,{

1K
j+1

2

}N
j=0

)
is a (natural) basis of the discrete function

space SM,0.

So the vector space SM,0 is of dimension 2N + 1. Let us
introduce now an important subspace of SM,0 denoted by SM,0

0

and defined as :

SM,0
0

def
= {vh ∈ SM,0 / v 1

2
= vN+ 1

2
= 0}. (25)

This subspace, with dimension 2N − 1, involves the
homogeneous Dirichlet boundary conditions (2). As we will
see later it plays a key role in the finite volume reconstruction
of the exact solution to (1)-(2), with second order convergence
rate.

Remark 2.1. Note that when one replaces the boundary
conditions (2) with the following one: u(a) = α and u(b) = β

the discrete function framework SM,0
0 should be replaced with

what follows:

SM,0
α,β

def
= {vh ∈ SM,0 / vh(x 1

2
) = α and vh(xN+ 1

2
) = β}. (26)

We will come back to nonhomogeneous Dirichlet boundary conditions for further comments.
Definition 2.4. For a given bounded interval T of R we set:

P0(T ) = {v : T −→ R / ∃ vT ∈ R s.t. v(x) = vT in T}. (27)

where ”s.t.” stands for such that. 2

On the other hand let us set:

SM,0

0
def
=

{
vh 6 vh(x) =

N

Σ
i=1

vi1Ki
(x) a.e. in Ω

with vi ∈ R ∀i = 1, · · · , N} (28)

and

SM,0
0

def
=

{
vh 6 vh(x) =

N−1

Σ
j=1

vj+ 1
2
1K

j+1
2

(x) a.e in Ω

with vj+ 1
2
∈ R ∀j = 1, · · · , N − 1

}
, (29)

accounting with the boundary conditions v 1
2

= vN+ 1
2

= 0. Note that the function spaces SM,0

0 and SM,0
0 are obviously subspaces

of SM,0
0 . Moreover the following properties hold:

Proposition 2.2. (Isomorphic relations)
We use the symbol ≡ between two vector spaces to mean there exists an isomorphism between them.
a. The following isomorphic relation holds:

SM,0
0

def
= SM,0

0 ⊕ SM,0
0 ≡ SM,0

0 × SM,0
0 .

b. Moreover we have the following isomorphic relations:

SM,0

0 ≡
N∏
i=1

P0(Ki) and SM,0
0 ≡

N−1∏
i=1

P0(Ki+ 1
2
).

2.2.2. Discrete Gradient Operator
The definition of discrete gradient operator requires the introduction of the mesh D made up of elements from one of the

forms: Di+ 1
4

= [xi, xi+ 1
2
] or Di− 1

4
= [xi− 1

2
, xi], for i ∈ {1, 2, ..., N}.

So we have
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D =
{
D1− 1

4
, D1+ 1

4
, D2− 1

4
, D2+ 1

4
, . . . , Di− 1

4
, Di+ 1

4
, . . . , DN− 1

4
, DN+ 1

4

}
.

Another ingredient is the discrete function space SD,0 defined as

SD,0 = {ζh / ∃{(ζi− 1
4
, ζi+ 1

4
)}Ni=1 ⊂ R2 such that ζh(x) =

=

N∑
i=1

[
ζi− 1

4
1D

i− 1
4

(x) + ζi+ 1
4
1D

i+1
4

(x)
]

a.e. in Ω} (30)

We equip the space SD,0 with the following scalar product:
Definition 2.5. (Scalar Product)
We define over SD,0 a scalar product (., .)L2(Ω),D as follows :

(ζh, ξh)L2(Ω),D =
N

Σ
i=1

hi
2

[
ζi− 1

4
ξi− 1

4
+ ζi+ 1

4
ξi+ 1

4

]
∀ζh, ξh ∈ SD,0.

The previous scalar product is associated with the following norm :

‖ζh‖L2(Ω),D =

(
N∑
i=1

hi
2

[
ζ2
i+ 1

4
+ ζ2

i− 1
4

]) 1
2

∀ ζh ∈ SD,0. (31)

Definition 2.6. (Discrete Gradient operator)
A linear operator ∇D from SM,0 to SD,0 is called a discrete gradient operator if and only if for all vh ∈ SM,0 the following

identity holds :

∇Dvh
def
=

N∑
i=1

2

hi

[
(vi − vi− 1

2
)1D

i− 1
4

+ (vi+ 1
2
− vi)1D

i+1
4

]
(32)

Setting:

[∇Dvh]i+ 1
4

=
vi+ 1

2
− vi

hi/2
and [∇Dvh]i− 1

4
=
vi − vi− 1

2

hi/2
(33)

the following obvious result holds:
Proposition 2.3. The mapping

v 7−→
∥∥∥∇Dvh

∥∥∥
L2(Ω),D

def
=

(
N

Σ
i=1

hi
2

[[
∇Dvh

]2
i+ 1

4

+
[
∇Dvh

]2
i− 1

4

]) 1
2

∀vh ∈ SM,0

is a semi-norm over the discrete function space SM,0.
Remark 2.2. It is to notice that the mesh D could be defined as the family {Dzj}2Nj=1, where we have set for

j ∈ {1, 2, 3, ..., 2N}:
zj =

3

4
+

1

2
(j − 1) and Dzj = [xzj− 1

4
, xzj+ 1

4
].

It then follows from what precedes that the discrete gradient ∇D of a discrete function vh from the space SM,0 could be also
defined as:

∇Dvh =

2N∑
j=1

1

xzj+ 1
4
− xzj− 1

4

[
vzj+ 1

4
− vzj− 1

4

]
1Dzj

.

2.2.3. Inner Products Defined on SM,0 and SM,0
0

Recall that SM,0
0 is a subspace of SM,0. Let us define over the space SM,0 the following inner products (where mes[.] is the

Lebesgue measure in one-dimensional space ):
1. First inner product on SM,0 and particular case of SM,0

0
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(vh, wh)L2(Ω),M

def
=

N

Σ
i=1

mes[Ki]viwi+
N

Σ
i=0

mes[Ki+ 1
2
]vi+ 1

2
wi+ 1

2
∀vh, wh ∈ SM,0 (34)

with associated norm ‖ . ‖L2(Ω),M naturally defined by:

‖ vh ‖ L2(Ω),M
def
= =

(
N

Σ
i=1

N

Σ
i=1

mes[Ki]v
2
i+

N

Σ
i=0

mes[Ki+ 1
2
]v2
i+ 1

2

) 1
2

∀vh ∈ SM,0. (35)

The restriction of the norm ‖‖L2(Ω),M to the space SM,0
0 reads as follows:

‖ vh ‖ ∗L2(Ω),M

def
= =

(
N

Σ
i=1

N

Σ
i=1

mes[Ki]v
2
i+

N−1

Σ
i=1

mes[Ki+ 1
2
]v2
i+ 1

2

) 1
2

∀vh ∈ SM,0
0 (36)

since v 1
2

= vN+ 1
2

= 0 for all vh ∈ SM,0
0 (see relation (25)).

2. Second inner product on SM,0 :

(vh, wh)H1(Ω),M,D

def
= (vh, wh)L2(Ω),M +

(
∇Dvh,∇Dwh

)
L2(Ω),D

∀vh, wh ∈ SM,0. (37)

The discrete norm associated with this inner product is denoted by ‖vh‖H1(Ω),M,D and naturally defined by

‖vh‖H1(Ω),M,D =
(
‖vh‖2L2(Ω),M +

∥∥∇Dvh
∥∥2

L2(Ω),D

) 1
2 ∀vh ∈ SM,0

0 . (38)

3. Discrete version of Poincaré-Friedrichs inequality :
We recall that the ”continuous” version of Poincaré-Friedrichs inequality is given by (12). Let us start with introducing some

projection operators at least useful for the proof of the discrete version of Poincaré-Friedrichs inequality.
Definition 2.7. (Projection operators)

Let PM and PM be two projection operators defined on the space SM,0
0 with values in SM,0

0 and SM,0
0 respectively (see relations

(25) (28) and (29) for the definition of these spaces):

PM : SM,0
0 −→ SM,0

0 such that PM(vh) =

N∑
i=1

vi1Ki
(39)

and PM : SM,0
0 −→ SM,0

0 such that PM(vh) =

N−1∑
i=1

vi+ 1
2
1K

i+1
2

. (40)

Lemma 2.1. The projection operators PM and PM satisfy the following continuity properties: ∀ vh ∈ SM,0
0{

‖PM(vh)‖L2(Ω),M ≤ mes[Ω]‖∇Dvh‖L2(Ω),D

‖PM(vh)‖L2(Ω),M ≤ mes[Ω]‖∇Dvh‖L2(Ω),D

(41)

Proof a. Let us prove the first inequality given by the previous Lemma i.e ∀ vh ∈ SM,0
0

‖PM(vh)‖L2(Ω),M ≤ mes[Ω]‖∇Dvh‖L2(Ω),D.

Let us choose arbitrarily i ∈ {1, 2, ..., N} and vh ∈ SM,0
0 . So for a.e. x ∈ Ki we have what follows:

vh(x) ≡ vi = [v1 − v1− 1
2
] + [−v1 + v1+ 1

2
] + [v2 − v2− 1

2
] + [−v2 + v2− 1

2
] + . . .+ [vi − vi− 1

2
]. (42)

We deduce that for a.e. x ∈ Ki the following holds:
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| vh(x) |=| vi |≤ | v1 − v1− 1
2
| + | −v1 + v1+ 1

2
| + | v2 − v2− 1

2
| + | −v2 + v2− 1

2
| + . . .+ | vi − vi− 1

2
|

≤
N

Σ
j=1

(
| vj − vj− 1

2
| + | vj − vj+ 1

2
|
)

≤
N

Σ
j=1

[√
hj/2
(
| vj − vj− 1

2
| + | vj − vj+ 1

2
|
) 1√

hj/2

]
(43)

It follows from Cauchy-Schawrz inequality that for a.e. x ∈ Ki, with i ∈ {1, 2, ..., N}, we have:

| vh(x) |2=| v2
i |≤mes[Ω]

N

Σ
j=1

2

hj

[(
vj − vj− 1

2

)2

+
(
vj − vj+ 1

2

)2
]

= mes[Ω] ‖ ∇Dvh ‖2L2(Ω),D (44)

Integrating the both sides of the previous inequality inKi and summing on i ∈ {1, 2, ..., N} leads straightly to the investigated
inequality.

b. Let us prove the second inequality given by the previous Lemma i.e.

∀ vh ∈ SM,0
0 ‖PM(vh)‖L2(Ω),M ≤ mes[Ω]‖∇Dvh‖L2(Ω),D.

As for the first inequality, let us choose arbitrarily i ∈ {1, 2, ..., N} and vh ∈ SM,0
0 . So for a.e. x ∈ Ki+ 1

2
we have what

follows:

vh(x) = vi+ 1
2

= (vi+ 1
2
− vi) + (vi − vi− 1

2
) + (vi− 1

2
− vi−1) + (vi−1 − vi− 3

2
) + (vi− 3

2
− vi−2) + . . . . . .+ (vi − v 1

2
).

It follows that for a.e. x ∈ Ki+ 1
2

, with i ∈ {1, 2, ..., N − 1}, we have

| vh(x) |=| vi+ 1
2
|≤

N

Σ
j=1

[√
hj/2
(
| vj − vj+ 1

2
| + | vj − vj− 1

2
|
) 1√

hj/2

]
Thanks to Cauchy-Schwarz we get for a.e. x ∈ Ki+ 1

2
, with i ∈ {1, 2, ..., N − 1},

| vh(x) |2=| vi+ 1
2
|2≤ mes[Ω]‖∇Dvh‖2L2(Ω),D (45)

Integrating the both sides of the previous inequality inKi+ 1
2

and summing on i ∈ {1, 2, ..., N−1} lead to the second inequality
of the previous Lemma.

We have the following results that serve as ingredients for the stability result and error estimates coming in the last section.
Let us start with setting.

‖ vh ‖L∞(Ω),M= max{| v1 |, | v 3
2
|, | v2 |, | v 3

2
|, . . . , . . . , | vN− 1

2
|, | vN |]} ∀vh ∈ SM,0

0

Proposition 2.4. (Discrete Poincaré-Friedrichs inequality and plus)
c. The following discrete version of Poincaré-Friedrichs inequality holds:

‖ vh ‖L2(Ω),M≤
√

2mes[Ω]‖∇Dvh‖L2(Ω),D ∀ vh ∈ SM,0
0 . (46)

d. Moreover we have:
‖ vh ‖L∞(Ω),M≤

√
mes[Ω]‖∇Dvh‖L2(Ω),D ∀ vh ∈ SM,0

0 . (47)

Proof Summing side by side the two inequalities of the previous Lemma leads straightly to the discrete version of Poincaré-
Friedrichs inequality as stated in the previous Proposition. The second inequality follows straightly from (44)-(45).

4. Standard inner product of SM,0
0

An immediate consequence of the previous Proposition is that:
Corollary 2.1. (Very useful result)
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The following mapping defined over SM,0 by

vh 7−→ ‖∇Dvh‖L2(Ω),D (48)

is a norm for SM,0
0 . Moreover this norm is equivalent on SM,0

0 to the standard norm of SM,0 introduced above and associated
with the scalar product (., .)H1(Ω),M,D (see relation (37)).

Terminology: The norm defined on SM,0
0 by (48) is called in the sequel ”Discrete H1

0−norm” and considered as the standard
norm of this discrete functional space.

(vh, wh)H1(Ω),M,D

def
= (vh, wh)L2(Ω),M +

+
(
∇Dvh,∇Dwh

)
L2(Ω),D

∀vh, wh ∈ SM,0 (49)

defines a scalar product on SM,0
0 , called in the sequel ”standard scalar product” of SM,0

0 . This scalar product is associated with
the ”DiscreteH1

0−norm”.
Let us give now a result that plays a key role in the proof of the stability of the new finite volume scheme that we will be

exposing in the next section.
Proposition 2.5. (A fundamental result)

Let ΠM be a linear mapping defined over L2(Ω) with values in the space SM,0 def
= SM,0

0 ⊕ SM,0 as follows:

ΠM(v) =

N∑
i=1

〈v〉i1Ki +

N∑
i=0

〈v〉i+ 1
2
1K

i+1
2

∀ v ∈ L2(Ω) (50)

where SM,0 def
= SM,0

0 ⊕ V ect(1K 1
2

,1K
N+1

2

) and where we have set:

〈v〉i =
1

mes(Ki)

∫
Ki

v(x)dx ∀ 1 ≤ i ≤ N (51)

and
〈v〉i+ 1

2
=

1

mes(Ki+ 1
2
)

∫
K

i+1
2

v(x)dx ∀ 0 ≤ i ≤ N. (52)

Then ΠM is continuous with respect to the norms ‖.‖L2(Ω) and ‖.‖L2(Ω),M respectively defined in L2(Ω) and SM,0, i.e. there
exists $, a mesh-independent nonnegative real number, such that

‖ΠM(v)‖L2(Ω),M ≤ $‖v‖L2(Ω) ∀ v ∈ L2(Ω).

Proof Let v be a function from the space L2(Ω). So according to the definition of the operator ΠM (see relations (50)-(52))
we have:

‖ΠM(v)‖2L2(Ω),M =

N∑
i=1

hi〈v〉2i +

N∑
i=0

hi+ 1
2
〈v〉2i+ 1

2
= (53)

=

N∑
i=1

1

hi
[

∫
Ki

v(x)dx]2 +

N∑
i=0

1

hi+ 1
2

[

∫
K

i+1
2

v(x)dx]2 ≤ (54)

≤
N∑
i=1

∫
Ki

|v(x)|2dx +

N∑
i=0

∫
K

i+1
2

|v(x)|2dx = (55)

= ‖v‖2L2(Ω) (56)

According to what precedes we have established that

‖ΠM(v)‖L2(Ω),M ≤ ‖v‖L2(Ω). (57)

So ends the proof.
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3. A New Finite Volume Scheme for the
System (1)-(2)

We expose here the main steps leading to a new finite
volume approximation of the balance equation (1), with
prescribed homogeneous Dirichlet boundary conditions (2).

3.1. Notations and Definitions

Let ϕ(.) be a (real-valued or vector-valued) function defined
over Ω and x ∈ Ω. We denote by ϕ(x+) and ϕ(x−)

respectively the limits of ϕ(s) when s
>−→ x and when

s
<−→ x. In the same order of ideas if ζ(., .) is a (real-valued

or vector-valued) function defined over Ω × R, we denote by
ζ(x+, z) and ζ(x−, z) respectively the limits of ζ(s, z) when
s

>−→ x and when s <−→ x for all z ∈ R.
Definition 3.1. (Flow Velocity and Flux)
Recall that u is the exact solution to (1)-(2) and u′ is its

gradient (in one dimension space). Let us define the flow

velocity q and the corresponding flux F at the right-hand side
and the left-hand side of every point x ∈ Ω as follows:

q(xτ , u′)
def
= −[λu′](xτ )

F (xτ , u′)
def
= q(xτ , u′) · ν(xτ )

(58)

where we have set

ν(xτ )
def
=


−1 if τ = +

+1 if τ = −
(59)

3.2. Discrete Mass Conservation Per Control-volume

We proceed in several steps as it follows.
1. Step one: Mass conservation principle for control-

volumes
Integrating the balance equation (1) in the control-volumes

Ki and Ki+ 1
2

, leads to

F (x−
i+ 1

4

, u′) + F (x+
i− 1

4

, u′) +
∫
Ki
µ(x)u(x)dx = hi

2 〈f〉i ∀i = 1, . . . , N

F (x−
i+ 3

4

, u′) + F (x+
i+ 1

4

, u′) +
∫
K

i+1
2

µ(x)u(x)dx = hi+hi+1

4 〈f〉i+ 1
2
∀i = 1, . . . , N − 1

(60)

where we have set 
〈f〉i

def
= 1

mes(Ki)

∫
Ki
f(x)dx

〈f〉i+ 1
2

def
= 1

mes(K
i+1

2
)

∫
K

i+1
2

f(x)dx

(61)

and where
xi± 1

4

def
= xi ±

hi
4
, i = 1, 2, ..., N. (62)

Remark that the term
xi+ 3

4

def
= xi+ 1

2
+
hi+1

4
(63)

appearing in the second equation of the system (60) is of the form (62). Indeed we have

xi+ 3
4

= x(i+1)− 1
4

i = 0, 1, ..., N − 1. (64)

It follows from definitions (58) that

∀∀i = 1, . . . , N


F (x−

i+ 1
4

, u′) = −λiu′(xi + hi

4 )

F (x+
i− 1

4

, u′) = λiu
′(xi − hi

4 )

(65)

and

∀∀i = 1, . . . , N

F (x−
i+ 3

4

, u′) = −λi+1u
′(xi+ 1

2
+ hi+1

4 )F (x+
i+ 1

4

, u′) = λiu
′(xi+ 1

2
− hi

4 ).
(66)

2. Step two: Definition of discrete flux function
Let us investigate now second order approximations of the following flux terms: F (x−

i+ 1
4

, u′), F (x+
i− 1

4

, u′), F (x−
i+ 3

4

, u′) and
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F (x+
i+ 1

4

, u′). Under the assumption that the exact solution u to the continuous problem (1)-(2) lies in C3(Ωi), for all i ∈
{1, 2, ..., N}, the Taylor-Lagrange theorem ensures that there exist zd

i+ 1
4

and zg
i+ 1

4

respectively in the intervals ]xi+ 1
4
, xi+ 1

2
[ and

]xi, xi+ 1
4
[ such that

u(xi+ 1
2
) = u(xi +

hi
4

) +
hi
4
u′(xi +

hi
4

) +
h2
i

32
u′′(xi +

hi
4

) + (
hi
4

)3u′′′(zdi+ 1
4
) (67)

u(xi) = u(xi +
hi
4

)− hi
4
u′(xi +

hi
4

) +
h2
i

32
u′′(xi +

hi
4

)− (
hi
4

)3u′′′(zg
i+ 1

4

). (68)

Subtracting (68) from (67) side by side leads to

u′(xi +
hi
4

) =

[
u(xi+ 1

2
)− u(xi)

]
hi/2

+
h2
i

32
u′′′(zi+ 1

4
) ∀i = 1, · · · , N. (69)

where xi < zg
i+ 1

4

< zi+ 1
4
< zd

i+ 1
4

< xi+ 1
2

. A similar development yields what follows:

u′(xi −
hi
4

) =

[
u(xi)− u(xi− 1

2
)
]

hi/2
+
h2
i

32
u′′′(ri− 1

4
), ∀i = 1, · · · , N. (70)

with xi− 1
2
< ri+ 1

4
< xi. Therefore, thanks to (65), we can deduce that ∀i = 1, · · · , N{

F (x−
i+ 1

4

, u′) = F (x−
i+ 1

4

,∇Duh)−R−
i+ 1

4

(h, u′′′)F (x+
i− 1

4

, u′) = F (x+
i− 1

4

,∇Duh)−R+
i− 1

4

(h, u′′′)
(71)

where, according to Definition 2.6, we have

∇Duh
def
=

N

Σ
i=1

1
hi/2

[
(ui − ui− 1

2
)1D

i− 1
4

+ (ui+ 1
2
− ui)1D

i+1
4

+

]
and where we have set

∀i = 1, · · · , N

{
F (x−

i+ 1
4

,∇Duh) = −λi[∇Duh]i+ 1
4

F (x+
i− 1

4

,∇Duh) = λi[∇Duh]i− 1
4
,

(72)

with [∇Duh]i+ 1
4

and [∇Duh]i− 1
4

defined as it follows:
Definition 3.2.

∀i = 1, · · · , N


[∇Duh]i+ 1

4

def
=

[
u(x

i+1
2

)−u(xi)

]
hi/2

[∇Duh]i− 1
4

def
=

[
u(xi)−u(x

i− 1
2

)

]
hi/2

.

(73)

Using the same arguments as for the computation of the fluxes F (x−
i+ 1

4

, u′) and F (x+
i− 1

4

, u′) (see (71) above) leads for all
i = 1, · · · , N − 1 to 

u′(xi+ 1
2

+ hi+1

4 ) =

[
u(xi+1)−u(x

i+1
2

)

]
hi+1/2

+
h2
i+1

32 u′′′(ẑi+ 3
4
)

u′(xi+ 1
2
− hi

4 ) =

[
u(x

i+1
2

)−u(xi)

]
hi/2

+
h2
i

32u
′′′(r̂i+ 1

4
)

(74)

Therefore, thanks to (66), we deduce that for all i = 1, · · · , N − 1
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
F (x−

i+ 3
4

, u′) = F (x−
i+ 3

4

,∇Duh) − R−
i+ 3

4

(h, u′′′)

F (x+
i+ 1

4

, u′) = F (x+
i+ 1

4

,∇Duh) − R+
i+ 1

4

(h, u′′′)

(75)

where F (x−
i+ 3

4

,∇Duh) and F (x+
i+ 1

4

,∇Duh) are defined as it follows:
Definition 3.3. ∀i = 1, · · · , N − 1 F (x−

i+ 3
4

,∇Duh)
def
= −λi+1[∇Duh]i+ 3

4

F (x+
i+ 1

4

,∇Duh)
def
= λi[∇Duh]i+ 1

4

(76)

where [∇Duh]i+ 1
4

is defined by (73) and [∇Duh]i+ 3
4

is defined as it follows:

∀i = 1, · · · , N − 1 [∇Duh]i+ 3
4

def
=

[
u(xi+1) − u(xi+ 1

2
)
]

hi+1/2
. (77)

Recall that {Os}Ss=1 is a family of open (nonempty) intervals defining a partition of Ω and associated with the diffusion
coefficient λ in the sense that:
λ(x) =

∑S
s=1 λs1Os

(x) a.e. in Ω. It follows from the previous development that:
Proposition 3.1. If the exact solution u to the problem (1)-(2) is such that the restriction of u to Os, for all 1 ≤ s ≤ S, lies in

C3(Os) then

|R±
i+ 1

4

(h, u′′′)| ≤ C h2 ∀ i ∈ {1

2
, 1,

3

2
, 2, ..., N − 1

2
, N} (78)

where C is a nonnegative mesh-independent number. Moreover the following holds:

∀ i ∈ {1

2
, 1,

3

2
, 2, ..., N − 1

2
, N}R−

i+ 1
4

(h, u′′′) + R+
i+ 1

4

(h, u′′′) = 0. (79)

3. Step three: Approximation of reaction term integrals
The term µ(x)u(x) in the left-hand side of the balance equation (1) is named the reaction-term. We should look for (at least)

a second order approximation of the reaction-term contribution in the integral formulation of the balance equation per control-
volume (see system of equations (60)). So we should perform these integral approximations for the control-volumes Ki and
Ki+ 1

2
, for i ∈ {1, 2, ..., N}. Using the Rectangle-centered quadrature leads to

∫
Ki

µ(x)u(x)dx =
hi
2

[µ(xi)u(xi)] − Ei(h, u′′) ∀i ∈ {1, 2, ..., N} (80)

with (C being a nonnegative mesh independent real number)

| Ei(h, u′′) | ≤ Ch3 ∀i ∈ {1, 2, ..., N} (81)

if the exact solution u to (1.1)-(1.2) lies in C2(Os), for all s ∈ {1, 2, ..., S}.
Since xi+ 1

2
is not necessarily the center-point for the interval Ki+ 1

2
the Rectangle-centered quadrature does not apply.

Nevertheless a simple Rectangle quadrature still applies and leads to what follows:

∫
Ki

µ(x)u(x)dx =
hi
2

[µ(xi)u(xi)] − Ei(h, u′′) ∀i ∈ {1, 2, ..., N} (82)

with (C being a nonnegative mesh independent real number)

| Ei(h, u′′) | ≤ Ch3 ∀i ∈ {1, 2, ..., N} (83)

if the exact solution u to (1)-(2) lies in C2(Os), for all s ∈ {1, 2, ..., S}.
Since xi+ 1

2
is not necessarily the center-point for the interval Ki+ 1

2
the Rectangle-centered quadrature does not apply.

Nevertheless a simple Rectangle quadrature still applies and leads to what follows:
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∫
K

i+1
2

µ(x)u(x)dx =
hi + hi+1

4
[µ(xi+ 1

2
)u(xi +

1

2
)]− Ei+ 1

2
(h, u′) ∀i ∈ {1, 2, ..., N − 1}. (84)

with
| Ei+ 1

2
(h, u′) | ≤ Ch2 ∀i ∈ {1, 2, ..., N − 1} (85)

as soon as the exact solution u to (1)-(2) lies in C1(Os), for all s ∈ {1, 2, ..., S}.
4. Step four (and the Last one): Equations of the discrete mass conservation principle per control-volume
Let us start with introducing the following simplified notations: ui− 1

2
≡ u(xi− 1

2
), ui ≡ u(xi), ui+ 1

2
≡ u(xi+ 1

2
), ui+1 ≡

u(xi+1), µi ≡ µ(xi), µi+ 1
2
≡ µ(xi+ 1

2
), ...

We deduce from the system of equations (60) and from the steps two and three above that in the control-volumesKi andKi+ 1
2

we have the following discrete mass conservation principle for all i = 1, · · · , N :{
λi

[ui−ui+1
2

]

hi/2
+ λi

[ui−ui− 1
2

]

hi/2
+ hi

2 µiui = hi

2 〈f〉i + R−
i+ 1

4

(h, u′′′) + R+
i− 1

4

(h, u′′′) + Ei(h, u′′) (86)

and

∀i = 1, . . . , N

λi+1

[u
i+1

2
−ui+1]

hi+1/2
+ λi

[u
i+1

2
−ui]

hi/2
+ [hi+hi+1]

4 µi+ 1
2
ui+ 1

2
=

[hi+hi+1]
4

〈
f
〉
i+ 1

2

+R−
i+ 1

4

(h, u′′′) +R+
i+ 1

4

(h, u′′′) + Ei(h, u ′′)
(87)

where the following truncation errors R±
i± 1

4

(h, u′′′), R−
i+ 3

4

(h, u′′′), Ei(h, u′) and Ei+ 1
2
(h, u′) are introduced in what precedes

with their respective estimates as well.

3.3. Definition of a New Finite Volume Scheme

From the system of equations (86-87) someone can easily see that when the truncation errors are neglected the discrete
unknowns {ui}Ni=1 and {ui+ 1

2
}N−1
i=1 satisfy the following system of “equations”:

λi
[ui − ui+ 1

2
]

hi/2
+ λi

[ui − ui− 1
2
]

hi/2
+
hi
2
µiui ≈

hi
2
〈f〉i ∀ i = 1, · · · , N (88)

and

λi+1

[ui+ 1
2
− ui+1]

hi+1/2
+ λi

[ui+ 1
2
− ui]

hi/2
+

[hi + hi+1]

4
µi+ 1

2
ui+ 1

2
≈ [hi + hi+1]

4
〈f〉i+ 1

2
∀ i = 1, · · · , N − 1. (89)

Inspired by the preceding system, let us introduce the following discrete problem:
Find in the discrete space SM,0

0 a function

uh =

N∑
i=1

ui1Ki +

N−1∑
i=1

ui+ 1
2
1K

i+1
2

(90)

such that its components ({ui}Ni=1 , {ui+ 1
2
}N−1
i=1 ), in the natural basis of SM,0

0 , are characterized as solution of the following
system of equations:

λi
[ui − ui+ 1

2
]

hi/2
+ λi

[ui − ui− 1
2
]

hi/2
+
hi
2
µiui =

hi
2
〈f〉i ∀ i = 1, · · · , N (91)

and

λi+1

[ui+ 1
2
− ui+1]

hi+1/2
+ λi

[ui+ 1
2
− ui]

hi/2
+

[hi + hi+1]

4
µi+ 1

2
ui+ 1

2
=

[hi + hi+1]

4
〈f〉i+ 1

2
∀ i = 1 · · · , N − 1 (92)
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Definition 3.4. (New Finite Volume Scheme)
The system of equations (91)-(92) is what we name a New

Finite Volume Scheme for the one- dimensional Diffusion-
Reaction Problem (1)-(2) that involves piecewise constant
diffusion coefficients.

Note that the discrete scheme (91)-(92) is not a 1-D
version of the conventional Discrete Duality Finite Volumes
(DDFV, for short). This is a new class of DDFV to be
extended and deeply explored in higher space dimensions.
Concerning the conventional DDFV that have appeared in two
formulations, the first one can be seen in the pioner works of
F. Herlemine and A. Njifenjou - I. Moukouop Nguena.[9, 10].
See also the following references.[11, 12, 13, 14, 15]. The
second formulation of the conventional DDFV has appeared
a few years later and was based on the concepts of discrete
gradient, discrete divergence and discrete version of Green’s
formulae. The first investigator to develop this kind of ideas
is P. Omnes and his collaborators.[8, 17]. Then after many
developments of the second formulation of DDFV have been
made in various situations (linear and non-linear diffusion
operators). For learning more about it, see for instance the
following works and references therein.[8, 16, 17].

4. Theoretical Analysis of the New Finite
Volume Scheme

We intend to expose in the current section some important
mathematical properties of the New Finite Volume Scheme.
Let us start with proving existence, uniqueness and stability of
uh in SM,0

0 .

4.1. Existence, Uniqueness and Stability for the Solution to
the System (90)-(92)

Let vh be a discrete function from the space SM,0
0 , chosen

arbitrarily, with components ({vi}Ni=1, {vj+ 1
2
}N−1
j=1 }) in the

basis ({1Ki}Ni=1, {1Kj+1
2

}N−1
j=1 }). Multiplying the two sides

of equations (91) and (92) with respectively vi and vj+ 1
2

,
summing on i ∈ {1, 2, ..., N} and on j ∈ {1, 2, ..., N − 1},
and doing some re-organization of terms, lead to the following
variational problem:

Find uh ∈ SM,0
0 such that:

N

Σ
i=1

λi
hi/2

[(
ui − ui− 1

2

)(
vi − vi− 1

2

)
+
(
ui − ui+ 1

2

)(
vi − vi+ 1

2

)]
+

N

Σ
i=1

[
hi
2
µiuivi+

+
hi + hi+1

4
µi+ 1

2
ui+ 1

2
vi+ 1

2

]
=

N

Σ
i=1

[
hi
2
〈f〉i vi +

(hi + hi+1

4

)
〈f〉i+ 1

2
vi+ 1

2

]
∀vh ∈ SM,0

0 . (93)

In terms of discrete gradient the previous variational problem can be re-written as
Find uh ∈ SM,0

0 such that:

N∑
i=1

λihi
2

([∇Duh]i− 1
4
[∇Dvh]i− 1

4
+ [∇Duh]i+ 1

4
[∇Dvh]i+ 1

4
) +

N∑
i=1

[
hi
2
µiuivi +

hi + hi+1

4
µi+ 1

2
ui+ 1

2
vi+ 1

2

]
=

=

N∑
i=1

[
hi
2
〈f〉ivi +

(
hi + hi+1

4

)
〈f〉i+ 1

2
vi+ 1

2

]
∀vh ∈ SM,0

0 . (94)

First of all, remark that the following equivalence holds:
Proposition 4.1. (Equivalence between the two

formulations)
Any function from the discrete functional space SM,0

0 is a
solution of the system of equations (91)-(92) if and only if it is
a solution of the variational equation (94).

Proof Follow closely the arguments developed for a similar
result in [4] (pages 23 and 24).

Proposition 4.2. (Existence, Uniqueness and Stability
Results)

1. There exists a unique function uh in the space SM,0
0

solving the variational equation (94).
2. Moreover the solution uh to (94) satisfies the following

inequality (named Stability inequality):

‖ uh ‖H1
0(Ω),M,D ≤ C ‖ f ‖L2(Ω) . (95)

where C is a mesh independent nonnegative real number.
Proof Recall that the space SM,0

0 is a closed subspace of the
Hilbert space SM,0 which is equipped with its standard inner
product (., .)H1(Ω),M,D. So SM,0

0 is also a Hilbert space with
respect to this inner product. That being said, let us set:
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B(wh, vh)
def
=

N

Σ
i=1

λihi
2

(
[∇Dwh]i− 1

4
[∇Dvh]i− 1

4
[∇Dwh]i+ 1

4
[∇Dvh]i+ 1

4

)
+

+
N

Σ
i=1

[
hi
2
µiwivi +

hi + hi+1

4
µi+ 1

2
wi+ 1

2
vi+ 1

2

]
∀wh, vh ∈ SM,0

0 (96)

and

L(vh) =
N

Σ
i=1

[
hi
2
〈f〉i vi +

(hi + hi+1

4

)
〈f〉i+ 1

2
vi+ 1

2

]
∀vh ∈ SM,0

0 . (97)

1. Let us prove Existence and Uniqueness of the solution
to the variational equation (94) by an application of the Lax-
Milgram theorem. It is obviously seen that B(., .) and L(.) are
respectively a bilinear form and a linear form over SM,0

0 . Let us
check if the conditions of Lax-Milgram are satisfied by these
two forms (see for instance [5] to learn more about theoretical

aspects of Lax-Milgram theorem, notably the proof of this
theorem; see for instance [4, 6] for the application of Lax-
Milgram theorem to Numerical Analysis of discrete models
for diffusion problems).

a. Continuity of B(., .): From the fact that (A + B)2 ≤
2[A2 +B2] for all real numbers A and B, we easily get that:

| B(wh, vh) |≤ 2

[
N

Σ
i=1

λihi
2

(
| [∇Dwh]i− 1

4
| + | [∇Dwh]i+ 1

4
|
)(
| [∇Dvh]i− 1

4
| + | [∇Dvh]i+ 1

4
|
)]2

+

+2

[∫
Ω

µ(x) | wh(x) || vh(x) | dx

]2

∀wh, vh ∈ SM,0
0 (98)

Thanks to assumptions in (3) and (5) we can get what follows from the previous inequality

| B(wh, vh) |≤ 2λ2
+

[
N

Σ
i=1

hi
2

(
| [∇Dwh]i− 1

4
| + | [∇Dwh]i+ 1

4
|
)(
| [∇Dvh]i− 1

4
| + | [∇Dvh]i+ 1

4
|
)]2

+

+2 ‖ µ ‖2L2(Ω)

[∫
Ω

| wh(x) || vh(x) | dx

]2

∀wh, vh ∈ SM,0
0 . (99)

From a double application of Cauchy-Schwartz inequality in the right-hand side of the previous inequality and thanks to
Proposition 2.4 (discrete version of Poincaré-Friedrichs) we obtain the continuity of the bilinear form B(., .).

b. Coercivity of B(., .): Let wh be an arbitrarily chosen function from the space SM,0
0 . So we have

B(wh, wh) =

N∑
i=1

λihi
2

(
([∇Dwh]i− 1

4
)2 + ([∇Dwh]i+ 1

4
)2
)

+

N∑
i=1

(
hiµi

2
w2
i +

hi + hi+1

4
µi+ 1

2
w2
i+ 1

2
)

)
≥

≥ λ−

N∑
i=1

hi
2

(
([∇Dwh]i− 1

4
)2 + ([∇Dwh]i+ 1

4
)2
)

= λ− ‖ ∇Dwh ‖2L2(Ω),D . (100)

where λ− is a mesh independent nonnegative number coming from the assumption (3).
c. Continuity of the linear form L(.): Let wh be an arbitrarily chosen function from the space SM,0

0 . So we have to show that
there exists a mesh independent nonnegative real number β such that

| L(wh) | ≤ β ‖ ∇Dwh ‖L2(Ω),D ∀wh ∈ SM,0
0 . (101)

There exist (at least) three ways to prove the inequality (101).
1) First way: Remark that L(.) is a linear map defined on a finite dimensional space. So L(.) is necessarily continuous.
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2) Second way: Remark that

L(wh) =

N∑
i=1

∫
Ki

f(x)wh(x)dx+

N∑
i=1

∫
K

i+1
2

f(x)wh(x)dx

∫
Ω

f(x)wh(x)dx (102)

Since the norm ‖ . ‖L2(Ω),M is the restriction to SM,0 of the standard norm of the well-known Hilbert space L2(Ω), the
Cauchy-Schawrz inequality applies and we get

| L(wh) | ≤ ‖ f ‖L2(Ω)‖ wh ‖L2(Ω),M ∀wh ∈ SM,0
0 . (103)

It follows from the discrete version of Poincaré-Friedrichs inequality that there exists a mesh independent nonnegative real
number C such that

| L(wh) | ≤ C ‖ ∇Dwh ‖L2(Ω),D ∀wh ∈ SM,0
0 . (104)

The continuity of L(.) is proven.
3) Third way: In virtue of the identity (A + B)2 ≤ 2A2 + 2B2 that holds for all A,B ∈ R, we have what follows for all

w ∈ SM,0
0 :

| L(vh) |≤ 2

[
N

Σ
i=1

wi

∫
Ki

f(x)dx

]2

+ 2

[
N

Σ
i=1

wi+ 1
2

∫
K

i+1
2

f(x)dx

]2

( from discrete Cauchy-Schwarz inequality we get)

≤ 2

[
N

Σ
i=1

hi
2
w2
i

][
N

Σ
i=1

1
hi/2

(∫
Ki

f(x)dx

)2
]

+ 2

[
N

Σ
i=1

hi + hi+1

4
w2
i+ 1

2

][
N

Σ
i=1

4

hi + hi+1

(∫
K

i+1
2

f(x)dx

)2
]

(Thanks to Cauchy-Schwarz’s inequality we have)

≤ 2

[
N

Σ
i=1

hi
2
w2
i

][
N

Σ
i=1

∫
Ki

[f(x)]2dx

]
+ 2

[
N

Σ
i=1

hi + hi+1

4
w2
i+ 1

2

][∫
K

i+1
2

[f(x)]2dx

]

Therefore

| L(wh) |2 ≤ 2 ‖ f ‖2L2(Ω)‖ wh ‖
2
L2(Ω),M . (105)

Thanks to the discrete version of Poincaré-Friedrichs (see
Proposition 2.4, relation (46) above) we could conclude that
L(.) is a continuous linear form.

2. The Stability of the discrete solution uh straightly
follows from the coercivity of the bilinear form B(., .) and the
continuity of the linear form L(.).

4.2. Matrix Properties of the Scheme (91)-(92)

The matrix form of the new Finite Volume Scheme (91)-(92)
may be expressed as follows:(

Ah Bh
(Bh)t Ch

)(
U
h

cc

U
h

vc

)
=

(
Fhcc
Fhvc

)
(106)

where we have set :

U
h

cc = {ui}1≤i≤N and U
h

vc =
{
ui+ 1

2

}
1≤i≤N−1

(107)

and where:
Fhcc is a sub-vector with N components defined only by the

right hand side of (91) and Fhvc a sub-vector with (N − 1)
components defined only by the right hand side of (92) as

the boundary conditions are of homogeneous Dirichlet ones.
Concerning the sub-matrices Ah, Ch and Bh, note that the
first two ones are respectively N ×N and (N − 1)× (N − 1)
diagonal matrices while Bh is a N × (N − 1) matrix with a
maximum of two coefficients different from 0 per line. At last
(·)t is the matrix transposition operator. So the symmetry and
the sparse structure of the matrix associated with the new finite
volume scheme are established.

Proposition 4.3. The matrix Mh associated with the finite
volume scheme (91)-(92) for solving (1)-(2) is symmetric,
positive definite and monotone.

Proof Since the symmetry of Mh is obvious let us
concentrate on positive definiteness and monotonicity.

1. Positive definiteness: It follows straightly from the
coercivity of the bilinear form B(., .) introduced in the proof
of Proposition 4.2.

2. Monotonicity: By definition Mh is monotone if the
components of any solution uh to the system (91)-(92) are
positive as soon as the components of ΠMf are positive (see
Proposition 2.5 for the definition of the operator ΠM). Recall
that the following characterization of monotone matrix holds:
Mh is monotone if and only if Mh is nonsingular and the
coefficients of its inverse are positive (see for instance [25].
At least there are two ways to prove that Mh is monotone.

a. The first way is a classical technique: We start with
setting
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umin = min{u 1
2
, u1, u 3

2
, ..., ui− 1

2
, ui, ui+ 1

2
, ..., uN− 1

2
, uN}

and
r = min{r ∈ {1

2
, 1,

3

2
, ..., i− 1

2
, i, i+

1

2
, ..., N − 1

2
, N}

ur = umin}.

Let us suppose that
1

2
< r ≤ N. (108)

From the previous assumption it is easily seen that there are two possibilities:
First possibility: r ∈ {1, 2, ..., i− 1, i, i+ 1, ..., N − 1, N}. In this case the following inequalities hold:

0 ≤ λr
[ur − ur+ 1

2
]

hr/2
+ λr

[ur − ur− 1
2
]

hr/2
+
hr
2
µrur < 0. (109)

This is absurd. So r ∈ {1, 2, ..., i− 1, i, i+ 1, ..., N − 1, N} is not possible.
Second possibility: r ∈ { 3

2 , ..., i−
1
2 , i+

1
2 , ..., N −

1
2}, with î < r < î+ 1, where î is an integer from the set {1, 2, ..., N −1}.

In this case the following inequalities hold:

0 ≤ λî+1

[ur − uî+1]

hî+1/2
+ λî

[ur − uî]
hî/2

+
[hî + hî+1]

4
µrur < 0. (110)

This is also absurd. So r ∈ { 3
2 , ..., i−

1
2 , i+ 1

2 , ..., N −
1
2}

is not a possibility. We conclude that the assumption (108)
is wrong. In consequence r = 1

2 . This implies that all the
components of uh are positive since u 1

2
= 0.

b. The second way is a geometric technique: According
to our knowledge, it has been exposed for the first time in
a work from A. Njifenjou for a two-dimensional diffusion
problem.[7]. We are going right now to apply it to the new
finite volume scheme (91)-(92).

Let us suppose that the right-hand side of the system (91)-
(92) is positive. We should deduce that all the components(
ui]

N
i=1;ui+ 1

2
]N−1
i=1

)
of its solution uh are positive.

Let us denote by uσ the smallest of the quantities uj ,
with j ∈ { 1

2 , 1, 3
2 , 2, 5

2 , ..., N −
1
2 , N}. There are two

possibilities: σ is either an integer or a non-integer rational
number. Let us analyze the case where σ is an integer number.
The left-hand side of the discrete balance equation in the
control-volume Kσ satisfies what follows:

0 ≤ λσ
[uσ − uσ+ 1

2
]

hr/2
+ λσ

[uσ − uσ− 1
2
]

hσ/2
+
hσ
2
µσuσ ≤ 0. (111)

So we have
uσ− 1

2
= uσ = uσ+ 1

2
(112)

If σ = 1 or σ = N the proof is ended. Otherwise,
consider the straight semi-line ∆σ with origin the node xσ and
passing through x 1

2
. Writing the discrete balance for the node

xσ− 1
2

and accounting with (112) we see that uσ = uσ−1 =

u[σ−1]− 1
2

. If [σ − 1] = 1 the proof is ended, otherwise repeat
the procedure until the equality [σ− 1] = 1 holds. This should
happen after a finite number of iterations. The case where σ is
a non-integer rational number is analyzed following the same
way as the case where σ is an integer number.

4.3. Error Estimates in ‖ . ‖L2(Ω),D, ‖ . ‖L2(Ω),M and
‖ . ‖L∞(Ω),M

Let us set{
ei

def
= u(xi)− ui ∀ 1 ≤ i ≤ N

ei+ 1
2

def
= u(xi+ 1

2
)− ui+ 1

2
∀ 0 ≤ i ≤ N

Recall that u(a) ≡ u(x 1
2
)

def
= u 1

2
and that u(b) ≡

u(xN+ 1
2
)
def
= uN+ 1

2
. In consequence we have the following

discrete boundary conditions:

e 1
2

= eN+ 1
2

= 0. (113)

We can now define the error function eh as follows

eh(x) =

N∑
i=1

ei1Ki
(x) +

N−1∑
i=1

ei+ 1
2
1K

i+1
2

(x) a.e. in Ω.

It is then clear that eh lies in SM,0
0 . It is easily seen that this

discrete function is solution of a system of the same type as
(86)-(87). Indeed, subtracting side by side equation (91) from
equation (86) and equation (92) from (87) lead to the so-called
Error function system that reads as
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
2λi
hi/2

(
ei − ei+ 1

2

)
+ 2λi

hi/2

(
ei − ei− 1

2

)
+ hi

2 µiei = R−
i+ 1

4

+R+
i− 1

4

+ Ei ∀i = 1, . . . , N

2λi+1
hi+1/2

(
ei+ 1

2
− ei+1

)
+ 2λi

hi/2

(
ei+ 1

2
− ei

)
+ hi+hi+1

4 µi+ 1
2
ei+ 1

2
= R−

i+ 3
4

+R+
i+ 1

4

+ Ei+ 1
2
∀i = 1, . . . , N − 1

(114)

Let us now investigate some estimates of the Error function with respect to the norm ‖ . ‖H1
0(Ω),M also denoted by ‖

. ‖L2(Ω),D and the standard norm of L2(Ω). For that purpose let us multiply the two sides of the first equation of the system
(114) by ei and then we sum on i ∈ {1, 2, ..., N}. Let us repeat the same operations with the second equation of the same system,
but with ei+ 1

2
instead of ei, and i ∈ {1, 2, ..., N − 1} instead of i ∈ {1, 2, ..., N}. Adding side by side the two previous sums

and re-ordering the terms, accounting with (79), lead to what follows:

B(eh, eh) =
N

Σ
i=1

R−
i+ 1

4

(
ei − ei+ 1

2

)
+

N

Σ
i=1

R+
i− 1

4

(
ei − ei− 1

2

)
+

N

Σ
i=1
Eiei+

N−1

Σ
i=1
Ei+ 1

2
ei+ 1

2
. (115)

where B(., .) is defined by (96) in Subsection 4.1 . From the discrete version of Cauchy-Schwarz inequality we get

| B(eh, eh) |2≤ 4

[
N

Σ
i=1

R−
i+ 1

4

(
ei − ei+ 1

2

)]2

+

[
N

Σ
i=1

R+
i− 1

4

(
ei − ei− 1

2

)]2

+ 4

[
N

Σ
i=1
Eiei

]2

+ 4

[
N

Σ
i=1
Ei+ 1

2
ei+ 1

2

]2

. (116)

Applying again the discrete version of Cauchy-Schwarz to the square of the first two sums from the right-hand side of the
previous inequality yields, accounting with (78) from Proposition 3.1 (note that in what follows C represents diverse mesh
independent nonnegative numbers):

4

[
N∑
i=1

R−
i+ 1

4

(ei − ei+ 1
2
)

]2

≤ C h4
N∑
i=1

1

hi/2
(ei − ei+ 1

2
)2 (117)

and

4

[
N∑
i=1

R+
i− 1

4

(ei − ei− 1
2
)

]2

≤ C h4
N∑
i=1

1

hi/2
(ei − ei− 1

2
)2. (118)

Repeating the same exercise with the square of the two last sums from the right-hand side of (116) and accounting with (20),
(83) and (85), leads to

4

[
N∑
i=1

Eiei

]2

≤ C h4
N∑
i=1

hie
2
i = C h4 ‖ PM(eh) ‖2L2(Ω),M (119)

and

4

[
N−1∑
i=1

Ei+ 1
2
ei+ 1

2

]2

≤ C h2
N−1∑
i=1

hi + hi+1

4
e2
i+ 1

2
= C h2 ‖ PM(eh) ‖2L2(Ω),M (120)

Applying the Lemma 2.1 to the terms

C h4 ‖ PM(eh) ‖2L2(Ω),M and C h2 ‖ PM(eh) ‖2L2(Ω),M

leads to

4

[
N∑
i=1

Eiei

]2

≤ C h4 ‖ ∇D(eh) ‖2L2(Ω),D (121)

and

4

[
N−1∑
i=1

Ei+ 1
2
ei+ 1

2

]2

≤ C h2 ‖ ∇D(eh) ‖2L2(Ω),D (122)
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On the other hand, it follows from inequalities (117)-(118) that

4

[
N∑
i=1

R−
i+ 1

4

(ei − ei+ 1
2
)

]2

+ 4

[
N∑
i=1

R+
i− 1

4

(ei − ei− 1
2
)

]2

≤ C h4 ‖ ∇D(eh) ‖2L2(Ω),D . (123)

From the inequalities (116), (121), (122), (123) and thanks
to the coercivity of the bilinear form B(., .) we can state what
follows:

Theorem 4.1. (Error Estimates)
Recall that the finite family of non empty subintervals
{Os}s∈S (associated with the diffusion coefficient λ(.))
defines a partition of Ω. Consider the assumptions (3), (5),
(20) and the following ones:

(i) The discontinuity points of the diffusion coefficient λ(.)
are part of the set {xi+ 1

2
}Ni=0 associated with the primary

(relatively coarse) mesh,
(ii) The exact solution u is such that the restriction u |Os

of
u to Os honors the following condition:

u |Os
∈ C3(Os) ∀ s ∈ S.

Then the finite volume approximation uh of the exact
solution u to (1)-(2) is such that:

a. In the context of non uniform primary mesh elements
Ωi]

N
i=1 combined with non negligible reaction effects, the Error

function eh = uh − uh satisfies the following estimates (first
order convergence):

‖ ∇Deh ‖L2(Ω),D ≤ C h, ‖ eh ‖L2(Ω),M ≤ C h

and

‖ eh ‖L∞(Ω),M ≤ C h;

b. In the context of uniform primary mesh elements
Ωi]

N
i=1 combined with non negligible reaction effects, the Error

function eh meets what follows (second order convergence):

‖ ∇Deh ‖L2(Ω),D ≤ C h2, ‖ eh ‖L2(Ω),M ≤ C h2

and

‖ eh ‖L∞(Ω),M ≤ C h2;

c. In the context of pure diffusion problems (i.e. reaction
effects negligible), over non-uniform primary meshes, the
Error function eh satisfies the following estimates (second
order convergence):

‖ ∇Deh ‖L2(Ω),D ≤ C h2, ‖ eh ‖L2(Ω),M ≤ C h2

and

‖ eh ‖L∞(Ω),M ≤ C h2.

Concluding remark: Note that the previous theorem asserts
that one can get a second order convergence from the
new finite volume scheme (91)-(92) applied to any 1-D
diffusion problem involving discontinuous coefficients (under

reasonable assumptions for the rest of data).

5. Conclusion
We have exposed in this work some new ideas for improving

the Finite Volume approximation of fluxes in the context
of 1-D flow problems governed by discontinuous diffusion
coefficients. By so doing a second order convergence
in adequate discrete energy norms is obtained even if the
diffusion coefficients is a piece-wise constant function. There
are three important features to underline concerning the
proposed Finite Volume scheme:

1. The first one is the large family of freedom degrees
associated with the approximate solution. We take this
opportunity to put in place a polynomial reconstruction
of the solution over diamond elements designed with
smaller characteristic size.

2. The extreme flexibility of the proposed Finite Volume
scheme is the second important feature to be underlined.
Indeed, as being seen in ongoing works the proposed
methods displays strong ability to easily extend to 2-
D and 3-D nonlinear anisotropic diffusion problems, in
general grids, following the spirit of the conventional
Discrete Duality Finite Volumes.

3. The remarkable feature above all is its capability
in higher space-dimension problems to avoid the
computation of equivalent effective diffusion matrix to
allocate to each diamond mesh element as required to
the conventional Discrete Duality Finite Volumes.
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